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Abstract. This study examines the use of GradientBoostingRegressor, StackingRegressor,
and Gradient Boosting Regression with HistGradientBoosting in developing models that predict
the compressive strength (fcu) and splitting tensile strength (fsp) of steel fiber-reinforced
recycled aggregate concrete (SFR-RAC). The information comprises 465 compressive strength
and 339 splitting tensile strength data of concrete mixes with varied ratios. Training and model
testing were performed using 80/20 split with PSO for the hyperparameter optimization. The
performance of the model was measured with four statistical metrics: coefficient of determination
(R?), mean absolute error (MAE), root mean squared error (RMSE), and mean absolute
percentage error (MAPE). Out of the models, Gradient Boosting Regression with
HistGradientBoosting performed better in terms of prediction, with StackingRegressor taking the
second rank. SHapley Additive exPlanations (SHAP) and feature importance were employed to
determine the influence of input parameters on model predictions. From the results obtained, it
was evident that the water content, cement content, and fiber ratio influence considerably the
strength of SFR-RAC. The models give good insights regarding SFR-RAC mixture behavior,
which is helpful in the production of environmentally friendly concrete with greater enhanced
strength. Future research can enhance the data and use other predictor variables to further support
these models.

Index Terms- Steel Fiber-Reinforced Recycled, Aggregate Concrete, Machine Learning
Techniques, Compressive Strength Prediction, Splitting Tensile Strength Prediction, Particle
Swarm Optimization (PSO)

I. Introduction

The construction industry has shifted towards the use of sustainable material,
and steel fiber-reinforced recycled aggregate concrete (SFR-RAC) is a possible new
substitute for conventional concrete. With the incorporation of steel fibers and recycled
aggregates, SFR-RAC combines enhanced mechanical properties and durability, hence
sustainable concrete solutions. However, one of the problems that still exist in the field
is accurately predicting the mechanical performance of such concrete mixtures,
particularly their compressive strength and splitting tensile strength, which are most
important parameters of concrete's structural strength and durability [1][2].

Usual experimental methods for determining these properties involve time-
consuming and costly laboratory testing, which can be resource- and time-intensive [3].
Thus, interest has been growing in using machine learning (ML) techniques to build
prediction models which can estimate the mechanical properties of concrete from its
mix composition. These models can potentially reduce the need for large-scale
experimentation, yet facilitate speedy and reliable predictions [4][5].
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Among the machine learning techniques, regression techniques are most suitable for
predicting continuous values like compressive and tensile strengths. Three new
regression techniques—GradientBoostingRegressor, StackingRegressor, and Gradient
Boosting Regression with HistGradientBoosting—are utilized in this research as they
can handle complex relationships between input variables and target variables even in
cases where the data is not linear [6][7]. These techniques have high accuracy and
efficiency of use in a wide range of fields from civil engineering [8][9].

To further improve the accuracy of the models, Particle Swarm Optimization (PSO) is
used to optimize hyperparameters of the models. PSO is a powerful optimization
algorithm inspired by bird flocking behavior and has been successfully applied in
numerous engineering applications [10][11]. In the current study, PSO helps determine
the optimal hyperparameters of the regression models to guarantee that compressive
strength and splitting tensile strength predictions are as accurate as possible.

The data used in training model development include 465 compressive and
339 splitting tensile strength samples, acquired from concrete mixes with mixtures of
steel fibers, recycled aggregates, and other contents in varied proportions. The samples
were divided between the test set and the training set based on an 80/20 percentage for
measuring model performance [12]. The models' performance was verified by four
statistical indices: the coefficient of determination (R?), mean absolute error (MAE),
root mean squared error (RMSE), and mean absolute percentage error (MAPE). These
indices show a broad view about the ability of the models to make the predictions of
compressive and tensile strengths accurately and reliably [13][14].

In addition to evaluating the performance of the models, this study uses
feature importance analysis and SHapley Additive exPlanations (SHAP) to identify the
influence of each input variable on the predicted outcomes. These tools allow us to
identify significant factors such as water content, amount of cement, and percentage of
fiber, which significantly affect the mechanical strength of SFR-RAC [15].

The findings of this study will try to provide meaningful information for the
design of more effective and sustainable concrete mixes that are not only in conformity
with structural requirements but also minimize environmental impact.

Through the application of machine learning techniques and optimization
algorithms, this research improves the sustainability of the building material by a better
understanding of the mechanical properties of SFR-RAC and the influencing factors.
Future research can be assisted by exploring other datasets and parameters to further
enhance these models and assess their applicability in real-world situations.

I1. Methodology

The method used in this study is illustrated in Figure 1 , in which data
gathering, model development, and evaluation are all addressed. The data set was
initially divided into the training and test sets, with the input variables and outputs
clearly specified. GradientBoostingRegressor, StackingRegressor, and
HistGradientBoosting-based Gradient Boosting Regression were applied to predict the
compressive and splitting tensile strengths of steel fiber-reinforced recycled aggregate
concrete (SFR-RAC) [16][17]. Particle Swarm Optimization (PSO) was employed to
tune the models' hyperparameters to deliver optimal performance and avoid overfitting
[20][21]. After the models had predicted, their output was cross-validated using model
evaluation techniques and its explainability was enhanced further with the aid of
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SHapley Additive exPlanations (SHAP) to identify the effect of different input features
[23][24]. The final step involved assessing the performance of the models in terms of
traditional measures such as R2, MAE, RMSE, and MAPE [18][19]. Figure 1 provides
a clear illustration of these steps, from data collection through performance evaluation,
and is a critical element of understanding the research methodology.

Figure 1: Model proposal
Fundamental ML models
e GradientBoostingRegressor

The GradientBoostingRegressor is an ensemble machine learning method
that builds a strong predictive model by iteratively fitting decision trees to the residuals
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(errors) of previous models. Each tree is fit to predict the error of the previous tree, and
the final prediction is the sum of the output of all trees, multiplied by a learning rate n:
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where f 0 (x) is the initial prediction, h m (x) igHie model (tree) at the m-th iteration,
and M is the total number of trees. The method minimizes the prediction error using
gradient descent, making it effective for complex, nonlinear relationships [25][26]
GradientBoostingRegressor is good in identifying complex patterns in high-
dimensional data, which is particularly useful in predicting properties like compressive
and splitting tensile strengths of concrete mix designs [27]. The model also tends to be
more immune to overfitting, especially under well-tuned parameters, and is, as such,
suitable for noisy or outlier datasets [28]. It also provides valuable insights into the
relevance of numerous various features, such as water content and water-to-cement
ratio, which affect the model predictions significantly [29].

e The StackingRegressor

The StackingRegressor is a type of ensemble learning that trains a number of base
models simultaneously in order to create a stronger predictive model. Unlike typical
ensemble methods like Random Forests that train each model independently,
StackingRegressor trains a number of base models and then trains a meta-model to learn
how to optimally combine their predictions. The meta-model is trained on the
predictions of the base models, allowing it to learn to leverage each model's strengths.
The final prediction is made by weighting all the base model predictions by the meta-
model's learned coefficients.

The benefit of StackingRegressor is improved accuracy through the reduction of bias
and variance by stacking a set of base models to get a better performance than the
performance of individual models [30][31]. It is also very flexible, accommodating the
use of different base models, both linear and nonlinear, which enhances its ability to
model complex relationships in the data [32]. This method is especially effective in
predicting outcomes where the relationship between input parameters and target results
is complex and nonlinear. An example would be concrete mixture designs, where
parameters like the content of fibers and aggregate proportions have a profound impact
on the mechanical strength of the material [33].

e Gradient Boosting Regression with HistGradientBoosting

Gradient Boosting Regression with HistGradientBoosting is a more effective version
of the basic gradient boosting algorithm. It offers better computational efficiency with
a histogram-based approach, which allows for better memory usage and quicker
training, especially on large datasets. HistGradientBoosting divides continuous features
into discrete bins (histograms), for better computational speed without compromising
accuracy for typical gradient boosting algorithms. The loss function used in gradient
boosting, e.g., HistGradientBoosting, is most frequently the Mean Squared Error
(MSE), given by the formula below:
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where L is the loss, y_i is the true value for the iii-th sample, f(x_1) is the predicted
value for the i-th sample, and N is the number of samples. The model is trained to
minimize this loss by iteratively adjusting the predictions.

One of the best advantages of Gradient Boosting Regression with
HistGradientBoosting is that it can handle large datasets very well. The histogram-
based approach optimizes both training time and memory usage, and hence is useful
for high-dimensional data [34][35]. It also maintains the inherent power of vanilla
gradient boosting, such as the ability to learn about complex, nonlinear relationships
and overfitting resistance if hyperparameters are optimally tuned. The method performs
well in areas such as concrete mix design, where relationships among variables (e.g.,
fiber content, cement ratio) are complex and nonlinear [36]. Also,
HistGradientBoosting is computationally more intensive, so faster experimentation and
model tuning can be done compared to traditional gradient boosting algorithms.

Table 1: Statistical metrics of different ML models on the test set.

Ite type Traini Testin
m ng g
R? RMS MAE MAP R? RMS MA MAP
E E E E E
fcu GBM 0.878 5.173 3.560 7.774 0.830 6.097 3.87 8.218
% 4 %
SRM  0.891 4.873 3.572 7.792 0.792 6.101 3.68 9.153
% 5 %
HistG  0.895 4.791 3.541 7.732 0.874 4873 3.54 7.792
BM % 1 %

fsp GBM 0901 0.618 0445 1021 0.896 0.618 0.54 10.21

7% 2 7%
SRM  0.854 0.752 0.526 11911 0.803 0.868 0.63 16.44

% 7 5%
HistG 0955 0451 0.224 5774 0.823 0.829 044 12.64
BM % 5 0%




International Journal for Research Trends in Social Science & Humanities
Volume 3 Issue 4
July-Aug 2025, PP 1-5

II1. Model development

Regression evaluation criteria
The performance of the machine learning models is evaluated by calculating the

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nash-
Sutcliffe Efficiency (NSE), Relative Percentage Difference (RPD), and Akaike
Information Criterion (AIC) metrics. The procedure for calculating the evaluation
metrics is as follows:
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Particle Swarm Optimization (PSO)

Kennedy and Eberhart introduced Particle Swarm Optimization (PSO) in 1995, a
nature-inspired optimization algorithm for bird flocking and school fish behavior. It is
an optimization algorithm frequently employed to solve complex optimization
problems involving high-dimensional variables and non-linear interactions. PSO is
extremely effective at solving optimization problems in search spaces of high
dimensions and is well known for its ability to achieve optimal or near-optimal
solutions.

The basic goal of PSO is to find the best values of a number of parameters by
searching the solution space. Any candidate solution is the so-called "particle" in the
swarm. Every particle has a position and velocity, which define the current solution and
by how much it moves in the search space. These particles "move" in the space based
on modifying their positions according to two significant factors: their personal
experience (personal best position, pbest) and the global experience found by the entire
swarm (global best position, gbest).

In machine learning model hyperparameter optimization, PSO can identify the optimal
parameter values to improve model performance. For instance, in predictive modeling
of Steel Fiber-Reinforced Recycled Aggregate Concrete (SFR-RAC), PSO was utilized
in determining the optimal machine learning model hyperparameters, which led to
significantly improved predictive accuracy.

The movement of the particles in the swarm is regulated by the following equations
which update the position and velocity of all particles at each step:

t+1
Vi

=w-vf+c 1 (pbest;—xf) + ¢, -1, - (ghest — x})

Where v_i*(t+1)the updated velocity of the particle i; w is inertia weight (balances
exploration and exploitation); ¢_lis a cognitive coefficient (self-confidence); ¢ 2 is
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social coefficient (swarm confidence); r 1,r 2 are random numbers in [0,1]; pbest i:
personal best position of particle i; gbest the global best position found by the swarm;
x_i"tis the current position of a particle i.

At every iteration of the Particle Swarm Optimization (PSO) algorithm, particles are
attracted to their personal best positions (designated as pbest) and global-best position
(designated as gbest) in the solution space and converge nearly to the optimal solution.
This movement of optimality is based on both the particle's personal experience and the
collective experience of the swarm [37]. The two primary forces that drive the
optimization process are exploration and exploitation. Exploration is the ability of the
particle to venture into new and unexplored areas of the solution space, while
exploitation tries to improve and refine solutions in the areas where the particle has
already found good outcomes. The equilibrium between the two parameters is
maintained by the inertia weight (w) and cognitive (c_1) and social (¢_2) coefficients
[38].

influences its current motion. The higher the inertia weight, the more it leans towards
exploration, allowing particles to search further in the solution space, while a smaller
inertia weight leans towards exploitation, focusing on refining already good solutions.
The cognitive coefficient (c 1)) represents the particle's faith in its individual
experiences, leading it to its personal best position, and the social coefficient (¢_2)
represents the faith in the global best-known position of the population by the overall
swarm, leading particles to the best solution found by the swarm as a whole. By varying
these values, PSO achieves an optimal trade-off between finding new regions in the
search space and exploiting the global best solution discovered so far, one of the most
significant reasons why PSO is efficient for solving complex optimization problems
[39].

PSO has become widely used in applications such as machine learning
hyperparameter optimization. With these types of applications, the goal is normally to
optimize a collection of parameters simultaneously in an effort to improve the
performance of a model. Machine learning algorithms typically have a number of
hyperparameters (such as learning rate, no. of trees, and tree depth) which must be
optimized for optimal performance. The natural characteristic of PSO to efficiently
search high-dimensional, complex hyperparameter spaces makes it a good candidate
for hyperparameter tuning [40]. Through feedback from performance metrics (e.g.,
accuracy, loss, etc.), PSO iteratively modifies the hyperparameters in the direction of
improved performance.

PSO will be most appropriate for problems in which the relationship between
parameters and outcomes is not linear and complex, and therefore it is tough for typical
optimization techniques to perform optimally. For example, in the estimation of
concrete mix design, where several parameters such as the quantity of fiber, cement
ratio, and water-to-cement ratio influence the ultimate strength of the concrete, PSO
can efficiently explore the vast parameter space to identify the most effective mix that
optimizes the characteristics of interest [41]. This approach not only enhances the
accuracy of the predictions but also facilitates the manufacture of materials to be more
efficient and economical through the optimization of the parameters through
automation.

The ease of use and adaptability of PSO have made it a popular method in many
optimization problems outside of machine learning, including engineering design,
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robotics, and financial modeling, where the optimization of many variables at one
instance is required to improve the performance of a system. As the method continues
to be developed, improvements to PSO, including hybrid PSO models and adaptive
parameterization, continue to make it an increasingly useful tool for solving problems
in the real world.
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Table 2: Impact of Particle Swarm Optimization on Metrics
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ML Compressi Splittin
algorith ve strength g
ms (fcu) tensile
strengt
h (fsp)
R? RMS MAP R? RMS  MAPE
E E E
GBM Befor 0.830 6.097 8218  0.896 0.618 10.217
e % %
After  0.877 5.173 7.774 0918 0.563  9.752%
%
SRM Befor 0.792 6.101 9.153  0.803 0.868  16.445
e % %
After  0.808 5.804 8235 0.829 0.721 14.382
% %
HistGB Befor 0.874 4.873 7.792  0.823 0.829  12.640
M e % %
After  0.890 4.526 7.432  0.856 0.752 11911
% %
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IV. RESULTS AND DISCUSSION

Model development

Based on the overall statistical performance presented in Table 1, the comparative
assessment was conducted among three machine learning algorithms—Gradient
Boosting Machine (GBM), Stacking Regressor Model (SRM), and Histogram-based
Gradient Boosting (HistGBM)—in an attempt to compare their potential for predicting
the compressive strength (fcu) and splitting tensile strength (fsp) of steel fiber-
reinforced concrete (SFRC). This comparison used a comprehensive collection of
evaluation metrics: the coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), on
both testing and training datasets.
In the prediction of compressive strength (fcu), HistGBM showed consistently better
generalization and accuracy on all metrics. It also had the highest testing R2 value of
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0.874, significantly better than GBM (0.830) and SRM (0.792), indicating that
HistGBM predictions were nearer to observed actual values. HistGBM also recorded
the lowest testing RMSE of 4.873, compared to GBM's 6.097 and SRM's 6.101,
indicating lower prediction error. Its MAPE of 7.792% was also the lowest, suggesting
HistGBM's capability in minimizing relative prediction error. These results show that
HistGBM performed a better job at capturing the nonlinearities and interactions within
the data for predicting compressive strength. GBM worked modestly well, but SRM
lagged behind, particularly in test accuracy, which shows its poor generalization ability
despite modest training results.

In contrast, in the case of tensile strength prediction of splitting (fsp), there was a slight
modification in the performance ranking. GBM exhibited the highest testing R2 of
0.896 and lowest RMSE of 0.618, indicating its superiority in predicting fsp for unseen
data. This is a sign that GBM generalized well for this mechanical property and was
able to produce high-fidelity predictions. Nevertheless, HistGBM again demonstrated
the best training performance with a very high R2 of 0.955, very low RMSE of 0.451,
and MAPE of only 5.774%. Although its test R2 dropped to 0.823—slightly below
GBM—HistGBM continued to show good performance with a competitive RMSE
(0.829) and moderate MAPE (12.640%). On the contrary, SRM continued to
underperform, especially in testing with the worst R2 of 0.803 and worst MAPE of
16.445%, indicating high deviations between actual and predicted values.
Table 1 shows that HistGBM consistently exhibits the best training performance for
both fcu and fsp, illustrating its ability to learn complex patterns. GBM, however,
exhibits slightly better generalization in fsp prediction, as revealed by its better testing
accuracy and lower error rates. SRM, on the other hand, worst performs on most of the
metrics, with poor generalization and high errors on both training and testing phases.
The results highlight the necessity of selecting an algorithm that achieves a trade-off
between learnability and generalization. HistGBM is the most consistent and overall
best method, with its highlight being compressive strength prediction, while GBM
could be considered a bit more if the application is for splitting tensile strength
specifically, due to its slightly better testing performance. The comparison
demonstrates the ensemble learning models' subtle behavior in different prediction
tasks and that advanced boosting methods like HistGBM can yield tangible benefits for
engineering problems with complex.

Effect of Particle Swarm Optimization (PSO)

The results in Figure 2 show the predictive ability of three different machine
learning models—Gradient Boosting (GBM), Stacking Regressor (SRM), and
Histogram-Based Gradient Boosting (HistGBM)—for compressive strength (fcu) and
splitting tensile strength (fsp) after being optimized using the Particle Swarm
Optimization (PSO) algorithm. The scatter plots show predicted vs. actual strength
values for training and test datasets, with perfect prediction lines and £20% error bands
for easy interpretation.

Start with the Gradient Boosting model, and we observe that there is extremely
good correlation between the predicted and actual values of fcu and fsp. Specifically,
the R? is 0.9674 (train) and 0.8774 (test) for fcu, and 0.9654 (train) and 0.9183 (test)
for fsp. The predicted points closely follow the ideal line and are largely within the
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+20% line, indicating high accuracy and excellent generalization power for this model
after optimization.

The Stacking Regressor model also gives good performance, albeit a little worse
than GBM. The R? values for training and testing on fcu are 0.9251 and 0.8303, and on
fsp are 0.9085 and 0.8295. Although still within acceptable margins of error, the scatter
departs only a little further from the ideal line than GBM, primarily for the test set,
suggesting SRM will not generalize quite so well but remains very predictive.
Finally, HistGBM achieves competitive results, particularly for compressive strength,
with R? of 0.9472 (training) and 0.8903 (test). For fsp, the model achieves 0.9143
(training) and 0.8561 (test), which is midway between GBM and SRM in accuracy. The
close grouping of predicted values along the perfect line, mainly for fcu, confirms
HistGBM's potential to model complex relationships in the data following PSO
optimization.
optimization actually enhances the predictive performance of the models. Of the three
models, GBM appears to perform best overall and in generalizing to unseen data, and
HistGBM generating strong and reliable predictions. The results affirm the applicability
of PSO in maximizing the precision of models and minimizing the margins of errors in
both compressive strength and tensile strength predictions.
Table 2 findings, combined with the qualitative observations of Figure 2, are
compelling evidence of the enhancing effect of Particle Swarm Optimization (PSO) on
machine learning model predictive performance for predicting steel fiber-reinforced
recycled aggregate concrete's compressive strength (fcu) and splitting tensile strength
(fsp). In each of the three models, i.e., Gradient Boosting (GBM), Stacking Regressor
(SRM), and Histogram-Based Gradient Boosting (HistGBM), there are remarkable
enhancements in the performance metrics with optimization, including increases in the
coefficient of determination (R?) and decreases in Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE).
In compressive strength (fcu), GBM's R? increased remarkably from 0.830 to 0.877
after PSO, RMSE decreased from 6.097 to 5.173, and MAPE from 8.218% to 7.774%.
This is nicely complemented by the graphical plot in Figure 2, where GBM shows dense
aggregation of predictions near the ideal line and within the £20% deviation band,
testifying to better generalization. SRM was also improved, and R? rose from 0.792 to
0.808 and RMSE fell minimally from 6.101 to 5.804. Although the reduction in MAPE
is minimal (9.153% to 8.235%), Figure 2 demonstrates tighter clustering prediction
after optimization. HistGBM, which also performed well before PSO, also benefited
from the optimization, as shown by the improved R? value from 0.874 to 0.890, and
RMSE and MAPE reductions from 4.873 to 4.526 and 7.792% to 7.432%, respectively
all contained in the more compact spread of prediction points in Figure 2.

For splitting tensile strength (fsp) prediction, GBM also continued providing
superior improvement post-optimization by taking R? to 0.918 from 0.896 and reducing
RMSE from 0.618 to 0.563 and MAPE from 10.217% to 9.752%. This can be seen
from Figure 2 by the tight tracking of predicted values on the ideal line and neat
clustering within the +20% bands. SRM also posted a small R? increase from 0.803 to
0.829 along with RMSE and MAPE decreases from 0.868 to 0.721 and 16.445% to
14.382%, respectively, showing a weaker yet more consistent model. HistGBM, while
its R? increased as much as 0.823 to 0.856, posted a slight decrease in RMSE from
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0.829 to0 0.752 and in MAPE from 12.640% to 11.911%, demonstrating its consistency
for both tasks.

In short, the evidence presented by Table 2 and Figure 2 collectively substantiates that
PSO significantly enhances machine learning algorithms' performance, particularly
GBM, which is consistently the best among the others in terms of training and testing
accuracy. The corresponding tabular and visual proof indicates that not only does PSO
enhance model accuracy but also the overall generalization power of the algorithms in
different strength prediction problems.

Feature Importance and PSO Optimization Analysis
e Feature Importance in Predicting fcu and fsp

Figure 3 and Figure 4 show the feature importance scores calculated with
SHAP (SHapley Additive exPlanations) values for predicting compressive strength
(fcu) and splitting tensile strength (fsp) from the HistGradientBoosting model. They
help in the interpretation of contribution of any input variable to the model prediction.
From Figure 3 , it is evident that the water-to-binder ratio (W/B) is by far the most
predominant parameter in fcu prediction with an importance score close to 1.4. The
predominance here means that mix water content in relation to binders has a great
impact on concrete compressive strength. Sand and cement have relatively lower
impacts. Fiber diameter (Df), length (Lf), and volume fraction (Vf) parameters do not
play an important role here, reinforcing the fact that matrix components have an
overwhelming influence over fiber parameters for compressive strength.
Compared to Figure 4 for fsp, there is more of a distributed feature influence. While
W/B remains the most important variable, its importance is much lower than its impact
in f cu. Here, fiber volume fraction (V{) is a dominant contributor, followed by coarse
aggregate (CA) and fiber diameter (Df). This shift reflects the greater sensitivity of
tensile strength to interface properties and characteristics, as well as to the properties
of the fibers in the composite mixture. Hence, matrix and fiber parameters for
prediction of splitting tensile strength need to be addressed in combination.

Feature Importance ( HistGradient Boosting - _f..)
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e Particle Swarm Optimization Behavior

Dynamics of Particle Swarm Optimization (PSO) during the optimization are exhibited
in Figure 5 and Figure 6. Figure 5 tracks the evolution of velocity of individual particles
over 30 iterations. The evident increase in velocity during initial iterations indicates an
increased rate of exploration of the search space as particles acquire local and global
best positions. At the neighborhood of iteration 15-20, the velocities of pioneer
particles are growing immensely, showing that optimal areas are being explored more
intensely. Towards the later iterations, tapering or stabilization in velocities is noticed
for most particles, showing convergence of the optimization process towards optimal
hyperparameters.

Figure 6 illustrates a 3D spatial mapping of particle movement in the optimization space
with more understanding of particles evolving in different dimensions. The random
initial paths, moving towards clustering toward final paths, visually substantiate
successful learning and reduced positional variability. This pattern substantiates the
efficiency of PSO in moving the population from random locations to optimal solutions
by repeated memory and cooperation operations.
It may be noted from the examination of feature importance that W/B ratio exercises a
dominating effect on both fcu and fsp, although fiber characteristics (specifically Vf
and Df) come to play a significantly more important role as explanatory factors for
tensile strength. This finding lends evidence to the hypothesis that compressive strength
is extremely matrix-proportioning sensitive, while tensile strength is more composite-
sensitive response.

The PSO plots confirm effective optimization by particle velocity acceleration and
stabilization, followed by spatial convergence. This dynamic behavior demonstrates the
effectiveness of PSO in robust model hyperparameter tuning, in turn enhancing the
predictive capabilities of the ML models. Coupled with feature interpretation, the joint
analysis confirms the effectiveness of integrating interpretable machine learning and
evolutionary search algorithms like PSO to achieve high accuracy along with model
interpretability in modeling fiber-reinforced concrete properties.
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V. CONCLUSION

This study presents a comprehensive approach for forecasting mechanical properties
compressive strength (fcu) and splitting tensile strength (fsp) of steel fiber-reinforced
recycled aggregate concrete (SFRRAC) by using machine learning (ML) models
enhanced with Particle Swarm Optimization (PSO). Of the three Machine Learning
models used to test them Gradient Boosting Machine (GBM), Stacking Regressor
Model (SRM), and Histogram-based Gradient Boosting (HistGBM) HistGBM proved
to perform better across all instances on both fcu and fsp in terms of better R2 and lesser
RMSE and MAPE. The model's performance also improved after PSO hyperparameter
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optimization, confirming the impact of the optimization in improving both accuracy
and generalization.

Findings in Table 1 revealed that before optimization, HistGBM was already better than
the other models, particularly on compressive strength prediction, with highest R2
values and lowest error rates. Results after optimization in Table 2 and Figure 2 also
reaffirmed its superiority with drastic improvement in test accuracy and closer
adherence to the +20% prediction interval range. In addition, PSO optimization
behavior, illustrated by the velocity and 3D movement patterns, confirmed the
convergence stability behavior and optimization approach effectiveness.
Further, feature importance analysis via SHAP showed the water-to-binder ratio (W/B)
as the most influential parameter for compressive and tensile strength. Nevertheless,
the fiber property contribution, particularly fiber volume fraction (Vf) and fiber
diameter (Df), rose in regulating tensile strength, thus highlighting the need for
balancing matrix and fiber design while designing high-performance SFRRAC.
In conclusion, the synergy of advanced ensemble ML models and PSO optimization
with the help of interpretable feature analysis forms a very potent, accurate, and
interpretable prediction model for the complex behavior of recycled fiber-reinforced
concretes. The findings present valuable contributions to academic research as well as
engineering design in green concrete engineering.
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