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Abstract. This study examines the use of GradientBoostingRegressor, StackingRegressor, 

and Gradient Boosting Regression with HistGradientBoosting in developing models that predict 

the compressive strength (fcu) and splitting tensile strength (fsp) of steel fiber-reinforced 

recycled aggregate concrete (SFR-RAC). The information comprises 465 compressive strength 

and 339 splitting tensile strength data of concrete mixes with varied ratios. Training and model 

testing were performed using 80/20 split with PSO for the hyperparameter optimization. The 

performance of the model was measured with four statistical metrics: coefficient of determination 

(R²), mean absolute error (MAE), root mean squared error (RMSE), and mean absolute 

percentage error (MAPE). Out of the models, Gradient Boosting Regression with 

HistGradientBoosting performed better in terms of prediction, with StackingRegressor taking the 

second rank. SHapley Additive exPlanations (SHAP) and feature importance were employed to 

determine the influence of input parameters on model predictions. From the results obtained, it 

was evident that the water content, cement content, and fiber ratio influence considerably the 

strength of SFR-RAC. The models give good insights regarding SFR-RAC mixture behavior, 

which is helpful in the production of environmentally friendly concrete with greater enhanced 

strength. Future research can enhance the data and use other predictor variables to further support 

these models. 

Index Terms- Steel Fiber-Reinforced Recycled, Aggregate Concrete, Machine Learning 

Techniques, Compressive Strength Prediction, Splitting Tensile Strength Prediction, Particle 

Swarm Optimization (PSO) 

 

 

I.  Introduction 
 

 The construction industry has shifted towards the use of sustainable material, 

and steel fiber-reinforced recycled aggregate concrete (SFR-RAC) is a possible new 

substitute for conventional concrete. With the incorporation of steel fibers and recycled 

aggregates, SFR-RAC combines enhanced mechanical properties and durability, hence 

sustainable concrete solutions. However, one of the problems that still exist in the field 

is accurately predicting the mechanical performance of such concrete mixtures, 

particularly their compressive strength and splitting tensile strength, which are most 

important parameters of concrete's structural strength and durability [1][2]. 

               Usual experimental methods for determining these properties involve time-

consuming and costly laboratory testing, which can be resource- and time-intensive [3]. 

Thus, interest has been growing in using machine learning (ML) techniques to build 

prediction models which can estimate the mechanical properties of concrete from its 

mix composition. These models can potentially reduce the need for large-scale 

experimentation, yet facilitate speedy and reliable predictions [4][5]. 
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Among the machine learning techniques, regression techniques are most suitable for 

predicting continuous values like compressive and tensile strengths. Three new 

regression techniques—GradientBoostingRegressor, StackingRegressor, and Gradient 

Boosting Regression with HistGradientBoosting—are utilized in this research as they 

can handle complex relationships between input variables and target variables even in 

cases where the data is not linear [6][7]. These techniques have high accuracy and 

efficiency of use in a wide range of fields from civil engineering [8][9]. 

To further improve the accuracy of the models, Particle Swarm Optimization (PSO) is 

used to optimize hyperparameters of the models. PSO is a powerful optimization 

algorithm inspired by bird flocking behavior and has been successfully applied in 

numerous engineering applications [10][11]. In the current study, PSO helps determine 

the optimal hyperparameters of the regression models to guarantee that compressive 

strength and splitting tensile strength predictions are as accurate as possible. 

                 The data used in training model development include 465 compressive and 

339 splitting tensile strength samples, acquired from concrete mixes with mixtures of 

steel fibers, recycled aggregates, and other contents in varied proportions. The samples 

were divided between the test set and the training set based on an 80/20 percentage for 

measuring model performance [12]. The models' performance was verified by four 

statistical indices: the coefficient of determination (R²), mean absolute error (MAE), 

root mean squared error (RMSE), and mean absolute percentage error (MAPE). These 

indices show a broad view about the ability of the models to make the predictions of 

compressive and tensile strengths accurately and reliably [13][14]. 

                    In addition to evaluating the performance of the models, this study uses 

feature importance analysis and SHapley Additive exPlanations (SHAP) to identify the 

influence of each input variable on the predicted outcomes. These tools allow us to 

identify significant factors such as water content, amount of cement, and percentage of 

fiber, which significantly affect the mechanical strength of SFR-RAC [15].  

                 The findings of this study will try to provide meaningful information for the 

design of more effective and sustainable concrete mixes that are not only in conformity 

with structural requirements but also minimize environmental impact. 

                 Through the application of machine learning techniques and optimization 

algorithms, this research improves the sustainability of the building material by a better 

understanding of the mechanical properties of SFR-RAC and the influencing factors. 

Future research can be assisted by exploring other datasets and parameters to further 

enhance these models and assess their applicability in real-world situations. 

 

II. Methodology 

 

                The method used in this study is illustrated in Figure 1 , in which data 

gathering, model development, and evaluation are all addressed. The data set was 

initially divided into the training and test sets, with the input variables and outputs 

clearly specified. GradientBoostingRegressor, StackingRegressor, and 

HistGradientBoosting-based Gradient Boosting Regression were applied to predict the 

compressive and splitting tensile strengths of steel fiber-reinforced recycled aggregate 

concrete (SFR-RAC) [16][17]. Particle Swarm Optimization (PSO) was employed to 

tune the models' hyperparameters to deliver optimal performance and avoid overfitting 

[20][21]. After the models had predicted, their output was cross-validated using model 

evaluation techniques and its explainability was enhanced further with the aid of 
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SHapley Additive exPlanations (SHAP) to identify the effect of different input features 

[23][24]. The final step involved assessing the performance of the models in terms of 

traditional measures such as R2, MAE, RMSE, and MAPE [18][19]. Figure 1 provides 

a clear illustration of these steps, from data collection through performance evaluation, 

and is a critical element of understanding the research methodology. 

 

Figure 1: Model proposal 

Fundamental ML models 

• GradientBoostingRegressor 

                The GradientBoostingRegressor is an ensemble machine learning method 
that builds a strong predictive model by iteratively fitting decision trees to the residuals 

(errors) of previous models. Each tree is fit to predict the error of the previous tree, and 
the final prediction is the sum of the output of all trees, multiplied by a learning rate η: 
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Equation if statement: 

 

𝑓(𝑥) = 𝑓0(𝑥) + 𝜂 ∑ ℎ𝑚(𝑥)

𝑀

𝑚=1

 
where f_0 (x) is the initial prediction, h_m (x) is the model (tree) at the m-th iteration, 
and M is the total number of trees. The method minimizes the prediction error using 
gradient descent, making it effective for complex, nonlinear relationships [25][26] 
GradientBoostingRegressor is good in identifying complex patterns in high-
dimensional data, which is particularly useful in predicting properties like compressive 
and splitting tensile strengths of concrete mix designs [27]. The model also tends to be 
more immune to overfitting, especially under well-tuned parameters, and is, as such, 
suitable for noisy or outlier datasets [28]. It also provides valuable insights into the 
relevance of numerous various features, such as water content and water-to-cement 
ratio, which affect the model predictions significantly [29]. 
 

 

• The StackingRegressor 

 
The StackingRegressor is a type of ensemble learning that trains a number of base 
models simultaneously in order to create a stronger predictive model. Unlike typical 
ensemble methods like Random Forests that train each model independently, 
StackingRegressor trains a number of base models and then trains a meta-model to learn 
how to optimally combine their predictions. The meta-model is trained on the 
predictions of the base models, allowing it to learn to leverage each model's strengths. 
The final prediction is made by weighting all the base model predictions by the meta-
model's learned coefficients. 
 

The benefit of StackingRegressor is improved accuracy through the reduction of bias 
and variance by stacking a set of base models to get a better performance than the 
performance of individual models [30][31]. It is also very flexible, accommodating the 
use of different base models, both linear and nonlinear, which enhances its ability to 
model complex relationships in the data [32]. This method is especially effective in 
predicting outcomes where the relationship between input parameters and target results 
is complex and nonlinear. An example would be concrete mixture designs, where 
parameters like the content of fibers and aggregate proportions have a profound impact 
on the mechanical strength of the material [33]. 

 

• Gradient Boosting Regression with HistGradientBoosting 

 
Gradient Boosting Regression with HistGradientBoosting is a more effective version 
of the basic gradient boosting algorithm. It offers better computational efficiency with 
a histogram-based approach, which allows for better memory usage and quicker 
training, especially on large datasets. HistGradientBoosting divides continuous features 
into discrete bins (histograms), for better computational speed without compromising 
accuracy for typical gradient boosting algorithms. The loss function used in gradient 
boosting, e.g., HistGradientBoosting, is most frequently the Mean Squared Error 
(MSE), given by the formula below: 
 

 

𝐿 =  ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑁

𝑖=1
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         where L is the loss, y_i is the true value for the iii-th sample, f(x_i ) is the predicted 

value for the i-th sample, and N is the number of samples. The model is trained to 

minimize this loss by iteratively adjusting the predictions. 

 

         One of the best advantages of Gradient Boosting Regression with 

HistGradientBoosting is that it can handle large datasets very well. The histogram-

based approach optimizes both training time and memory usage, and hence is useful 

for high-dimensional data [34][35]. It also maintains the inherent power of vanilla 

gradient boosting, such as the ability to learn about complex, nonlinear relationships 

and overfitting resistance if hyperparameters are optimally tuned. The method performs 

well in areas such as concrete mix design, where relationships among variables (e.g., 

fiber content, cement ratio) are complex and nonlinear [36]. Also, 

HistGradientBoosting is computationally more intensive, so faster experimentation and 

model tuning can be done compared to traditional gradient boosting algorithms. 

 

Table 1: Statistical metrics of different ML models on the test set. 

 

Ite
m 

type Traini
ng  

   Testin
g 

   

  R2 RMS
E 

MAE MAP
E 

R2 RMS
E 

MA
E 

MAP
E 

fcu GBM 0.878 5.173 3.560 7.774
% 

0.830 6.097 3.87
4 

8.218
% 

 SRM 0.891 4.873 3.572 7.792
% 

0.792 6.101 3.68
5 

9.153
% 

 HistG
BM 

0.895 4.791 3.541 7.732
% 

0.874 4.873 3.54
1 

7.792
% 

        

fsp GBM 0.901 0.618 0.445 10.21
7% 

0.896 0.618 0.54
2 

10.21
7% 

 SRM 0.854 0.752 0.526 11.911
% 

0.803 0.868 0.63
7 

16.44
5% 

 HistG
BM 

0.955 0.451 0.224 5.774
% 

0.823 0.829 0.44
5 

12.64
0% 
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III. Model development 

                        

           Regression evaluation criteria 

                     The performance of the machine learning models is evaluated by calculating the 

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nash-

Sutcliffe Efficiency (NSE), Relative Percentage Difference (RPD), and Akaike 

Information Criterion (AIC) metrics. The procedure for calculating the evaluation 

metrics is as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

MAPE =
100\%

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖

|

𝑛

𝑖=1

 

Particle Swarm Optimization (PSO)  
        Kennedy and Eberhart introduced Particle Swarm Optimization (PSO) in 1995, a 
nature-inspired optimization algorithm for bird flocking and school fish behavior. It is 
an optimization algorithm frequently employed to solve complex optimization 
problems involving high-dimensional variables and non-linear interactions. PSO is 
extremely effective at solving optimization problems in search spaces of high 
dimensions and is well known for its ability to achieve optimal or near-optimal 
solutions. 
         The basic goal of PSO is to find the best values of a number of parameters by 
searching the solution space. Any candidate solution is the so-called "particle" in the 
swarm. Every particle has a position and velocity, which define the current solution and 
by how much it moves in the search space. These particles "move" in the space based 
on modifying their positions according to two significant factors: their personal 
experience (personal best position, pbest) and the global experience found by the entire 
swarm (global best position, gbest). 
In machine learning model hyperparameter optimization, PSO can identify the optimal 
parameter values to improve model performance. For instance, in predictive modeling 
of Steel Fiber-Reinforced Recycled Aggregate Concrete (SFR-RAC), PSO was utilized 
in determining the optimal machine learning model hyperparameters, which led to 
significantly improved predictive accuracy. 
The movement of the particles in the swarm is regulated by the following equations 
which update the position and velocity of all particles at each step: 
 

𝑣𝑖
𝑡+1 = 𝑤 ⋅ 𝑣𝑖

𝑡 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) 

 

       Where v_i^(t+1)the updated velocity of the particle i; w is inertia weight (balances 

exploration and exploitation); c_1is a cognitive coefficient (self-confidence); c_2  is 
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social coefficient (swarm confidence); r_1,r_2 are random numbers in [0,1];  pbest_i: 

personal best position of particle i; gbest the global best position found by the swarm; 

x_i^tis the current position of a particle i. 

At every iteration of the Particle Swarm Optimization (PSO) algorithm, particles are 

attracted to their personal best positions (designated as pbest) and global-best position 

(designated as gbest) in the solution space and converge nearly to the optimal solution. 

This movement of optimality is based on both the particle's personal experience and the 

collective experience of the swarm [37]. The two primary forces that drive the 

optimization process are exploration and exploitation. Exploration is the ability of the 

particle to venture into new and unexplored areas of the solution space, while 

exploitation tries to improve and refine solutions in the areas where the particle has 

already found good outcomes. The equilibrium between the two parameters is 

maintained by the inertia weight (w) and cognitive (c_1) and social (c_2) coefficients 

[38]. 

influences its current motion. The higher the inertia weight, the more it leans towards 

exploration, allowing particles to search further in the solution space, while a smaller 

inertia weight leans towards exploitation, focusing on refining already good solutions. 

The cognitive coefficient (c_1)) represents the particle's faith in its individual 

experiences, leading it to its personal best position, and the social coefficient (c_2) 

represents the faith in the global best-known position of the population by the overall 

swarm, leading particles to the best solution found by the swarm as a whole. By varying 

these values, PSO achieves an optimal trade-off between finding new regions in the 

search space and exploiting the global best solution discovered so far, one of the most 

significant reasons why PSO is efficient for solving complex optimization problems 

[39]. 

   

         PSO has become widely used in applications such as machine learning 

hyperparameter optimization. With these types of applications, the goal is normally to 

optimize a collection of parameters simultaneously in an effort to improve the 

performance of a model. Machine learning algorithms typically have a number of 

hyperparameters (such as learning rate, no. of trees, and tree depth) which must be 

optimized for optimal performance. The natural characteristic of PSO to efficiently 

search high-dimensional, complex hyperparameter spaces makes it a good candidate 

for hyperparameter tuning [40]. Through feedback from performance metrics (e.g., 

accuracy, loss, etc.), PSO iteratively modifies the hyperparameters in the direction of 

improved performance. 

        PSO will be most appropriate for problems in which the relationship between 

parameters and outcomes is not linear and complex, and therefore it is tough for typical 

optimization techniques to perform optimally. For example, in the estimation of 

concrete mix design, where several parameters such as the quantity of fiber, cement 

ratio, and water-to-cement ratio influence the ultimate strength of the concrete, PSO 

can efficiently explore the vast parameter space to identify the most effective mix that 

optimizes the characteristics of interest [41]. This approach not only enhances the 

accuracy of the predictions but also facilitates the manufacture of materials to be more 

efficient and economical through the optimization of the parameters through 

automation. 

         The ease of use and adaptability of PSO have made it a popular method in many 

optimization problems outside of machine learning, including engineering design, 
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robotics, and financial modeling, where the optimization of many variables at one 

instance is required to improve the performance of a system. As the method continues 

to be developed, improvements to PSO, including hybrid PSO models and adaptive 

parameterization, continue to make it an increasingly useful tool for solving problems 

in the real world. 

 

Table 2: Impact of Particle Swarm Optimization on Metrics 

 

 

 

ML 
algorith
ms 

 Compressi
ve strength 
(fcu) 

   Splittin
g 
tensile 
strengt
h (fsp) 

   

  R2 RMS
E 

 MAP
E 

R2 RMS
E 

MAPE 

GBM Befor
e 

0.830 6.097  8.218
% 

0.896 0.618 10.217
% 

 After 0.877 5.173  7.774
% 

0.918 0.563 9.752% 

SRM Befor
e 

0.792 6.101  9.153
% 

0.803 0.868 16.445
% 

 After 0.808 5.804  8.235
% 

0.829 0.721 14.382
% 

HistGB
M 

Befor
e 

0.874 4.873  7.792
% 

0.823 0.829 12.640
% 

 After 0.890 4.526  7.432
% 

0.856 0.752 11.911
% 
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IV. RESULTS AND DISCUSSION  

 

Model development  

       Based on the overall statistical performance presented in Table 1, the comparative 

assessment was conducted among three machine learning algorithms—Gradient 

Boosting Machine (GBM), Stacking Regressor Model (SRM), and Histogram-based 

Gradient Boosting (HistGBM)—in an attempt to compare their potential for predicting 

the compressive strength (fcu) and splitting tensile strength (fsp) of steel fiber-

reinforced concrete (SFRC). This comparison used a comprehensive collection of 

evaluation metrics: the coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), on 

both testing and training datasets.  

In the prediction of compressive strength (fcu), HistGBM showed consistently better 

generalization and accuracy on all metrics. It also had the highest testing R2 value of 
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0.874, significantly better than GBM (0.830) and SRM (0.792), indicating that 

HistGBM predictions were nearer to observed actual values. HistGBM also recorded 

the lowest testing RMSE of 4.873, compared to GBM's 6.097 and SRM's 6.101, 

indicating lower prediction error. Its MAPE of 7.792% was also the lowest, suggesting 

HistGBM's capability in minimizing relative prediction error. These results show that 

HistGBM performed a better job at capturing the nonlinearities and interactions within 

the data for predicting compressive strength. GBM worked modestly well, but SRM 

lagged behind, particularly in test accuracy, which shows its poor generalization ability 

despite modest training results. 

In contrast, in the case of tensile strength prediction of splitting (fsp), there was a slight 

modification in the performance ranking. GBM exhibited the highest testing R2 of 

0.896 and lowest RMSE of 0.618, indicating its superiority in predicting fsp for unseen 

data. This is a sign that GBM generalized well for this mechanical property and was 

able to produce high-fidelity predictions. Nevertheless, HistGBM again demonstrated 

the best training performance with a very high R2 of 0.955, very low RMSE of 0.451, 

and MAPE of only 5.774%. Although its test R2 dropped to 0.823—slightly below 

GBM—HistGBM continued to show good performance with a competitive RMSE 

(0.829) and moderate MAPE (12.640%). On the contrary, SRM continued to 

underperform, especially in testing with the worst R2 of 0.803 and worst MAPE of 

16.445%, indicating high deviations between actual and predicted values.  

Table 1 shows that HistGBM consistently exhibits the best training performance for 

both fcu and fsp, illustrating its ability to learn complex patterns. GBM, however, 

exhibits slightly better generalization in fsp prediction, as revealed by its better testing 

accuracy and lower error rates. SRM, on the other hand, worst performs on most of the 

metrics, with poor generalization and high errors on both training and testing phases. 

The results highlight the necessity of selecting an algorithm that achieves a trade-off 

between learnability and generalization. HistGBM is the most consistent and overall 

best method, with its highlight being compressive strength prediction, while GBM 

could be considered a bit more if the application is for splitting tensile strength 

specifically, due to its slightly better testing performance. The comparison 

demonstrates the ensemble learning models' subtle behavior in different prediction 

tasks and that advanced boosting methods like HistGBM can yield tangible benefits for 

engineering problems with complex.  

 

Effect of Particle Swarm Optimization (PSO) 

        The results in Figure 2 show the predictive ability of three different machine 

learning models—Gradient Boosting (GBM), Stacking Regressor (SRM), and 

Histogram-Based Gradient Boosting (HistGBM)—for compressive strength (fcu) and 

splitting tensile strength (fsp) after being optimized using the Particle Swarm 

Optimization (PSO) algorithm. The scatter plots show predicted vs. actual strength 

values for training and test datasets, with perfect prediction lines and ±20% error bands 

for easy interpretation. 

 

       Start with the Gradient Boosting model, and we observe that there is extremely 

good correlation between the predicted and actual values of fcu and fsp. Specifically, 

the R² is 0.9674 (train) and 0.8774 (test) for fcu, and 0.9654 (train) and 0.9183 (test) 

for fsp. The predicted points closely follow the ideal line and are largely within the 
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±20% line, indicating high accuracy and excellent generalization power for this model 

after optimization. 

 

       The Stacking Regressor model also gives good performance, albeit a little worse 

than GBM. The R² values for training and testing on fcu are 0.9251 and 0.8303, and on 

fsp are 0.9085 and 0.8295. Although still within acceptable margins of error, the scatter 

departs only a little further from the ideal line than GBM, primarily for the test set, 

suggesting SRM will not generalize quite so well but remains very predictive. 

Finally, HistGBM achieves competitive results, particularly for compressive strength, 

with R² of 0.9472 (training) and 0.8903 (test). For fsp, the model achieves 0.9143 

(training) and 0.8561 (test), which is midway between GBM and SRM in accuracy. The 

close grouping of predicted values along the perfect line, mainly for fcu, confirms 

HistGBM's potential to model complex relationships in the data following PSO 

optimization. 

optimization actually enhances the predictive performance of the models. Of the three 

models, GBM appears to perform best overall and in generalizing to unseen data, and 

HistGBM generating strong and reliable predictions. The results affirm the applicability 

of PSO in maximizing the precision of models and minimizing the margins of errors in 

both compressive strength and tensile strength predictions. 

Table 2 findings, combined with the qualitative observations of Figure 2, are 

compelling evidence of the enhancing effect of Particle Swarm Optimization (PSO) on 

machine learning model predictive performance for predicting steel fiber-reinforced 

recycled aggregate concrete's compressive strength (fcu) and splitting tensile strength 

(fsp). In each of the three models, i.e., Gradient Boosting (GBM), Stacking Regressor 

(SRM), and Histogram-Based Gradient Boosting (HistGBM), there are remarkable 

enhancements in the performance metrics with optimization, including increases in the 

coefficient of determination (R²) and decreases in Root Mean Square Error (RMSE) 

and Mean Absolute Percentage Error (MAPE). 

In compressive strength (fcu), GBM's R² increased remarkably from 0.830 to 0.877 

after PSO, RMSE decreased from 6.097 to 5.173, and MAPE from 8.218% to 7.774%. 

This is nicely complemented by the graphical plot in Figure 2, where GBM shows dense 

aggregation of predictions near the ideal line and within the ±20% deviation band, 

testifying to better generalization. SRM was also improved, and R² rose from 0.792 to 

0.808 and RMSE fell minimally from 6.101 to 5.804. Although the reduction in MAPE 

is minimal (9.153% to 8.235%), Figure 2 demonstrates tighter clustering prediction 

after optimization. HistGBM, which also performed well before PSO, also benefited 

from the optimization, as shown by the improved R² value from 0.874 to 0.890, and 

RMSE and MAPE reductions from 4.873 to 4.526 and 7.792% to 7.432%, respectively 

all contained in the more compact spread of prediction points in Figure 2. 

          

       For splitting tensile strength (fsp) prediction, GBM also continued providing 

superior improvement post-optimization by taking R² to 0.918 from 0.896 and reducing 

RMSE from 0.618 to 0.563 and MAPE from 10.217% to 9.752%. This can be seen 

from Figure 2 by the tight tracking of predicted values on the ideal line and neat 

clustering within the ±20% bands. SRM also posted a small R² increase from 0.803 to 

0.829 along with RMSE and MAPE decreases from 0.868 to 0.721 and 16.445% to 

14.382%, respectively, showing a weaker yet more consistent model. HistGBM, while 

its R² increased as much as 0.823 to 0.856, posted a slight decrease in RMSE from 
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0.829 to 0.752 and in MAPE from 12.640% to 11.911%, demonstrating its consistency 

for both tasks. 

In short, the evidence presented by Table 2 and Figure 2  collectively substantiates that 

PSO significantly enhances machine learning algorithms' performance, particularly 

GBM, which is consistently the best among the others in terms of training and testing 

accuracy. The corresponding tabular and visual proof indicates that not only does PSO 

enhance model accuracy but also the overall generalization power of the algorithms in 

different strength prediction problems. 

 

Feature Importance and PSO Optimization Analysis 

• Feature Importance in Predicting fcu and fsp 

 

                Figure 3 and Figure 4 show the feature importance scores calculated with 

SHAP (SHapley Additive exPlanations) values for predicting compressive strength 

(fcu) and splitting tensile strength (fsp) from the HistGradientBoosting model. They 

help in the interpretation of contribution of any input variable to the model prediction. 

From Figure 3 , it is evident that the water-to-binder ratio (W/B) is by far the most 

predominant parameter in fcu prediction with an importance score close to 1.4. The 

predominance here means that mix water content in relation to binders has a great 

impact on concrete compressive strength. Sand and cement have relatively lower 

impacts. Fiber diameter (Df), length (Lf), and volume fraction (Vf) parameters do not 

play an important role here, reinforcing the fact that matrix components have an 

overwhelming influence over fiber parameters for compressive strength. 

Compared to Figure 4  for fsp, there is more of a distributed feature influence. While 

W/B remains the most important variable, its importance is much lower than its impact 

in f cu.  Here, fiber volume fraction (Vf) is a dominant contributor, followed by coarse 

aggregate (CA) and fiber diameter (Df). This shift reflects the greater sensitivity of 

tensile strength to interface properties and characteristics, as well as to the properties 

of the fibers in the composite mixture. Hence, matrix and fiber parameters for 

prediction of splitting tensile strength need to be addressed in combination. 
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• Particle Swarm Optimization Behavior 

Dynamics of Particle Swarm Optimization (PSO) during the optimization are exhibited 

in Figure 5 and Figure 6. Figure 5 tracks the evolution of velocity of individual particles 

over 30 iterations. The evident increase in velocity during initial iterations indicates an 

increased rate of exploration of the search space as particles acquire local and global 

best positions. At the neighborhood of iteration 15–20, the velocities of pioneer 

particles are growing immensely, showing that optimal areas are being explored more 

intensely. Towards the later iterations, tapering or stabilization in velocities is noticed 

for most particles, showing convergence of the optimization process towards optimal 

hyperparameters. 

 

Figure 6 illustrates a 3D spatial mapping of particle movement in the optimization space 

with more understanding of particles evolving in different dimensions. The random 

initial paths, moving towards clustering toward final paths, visually substantiate 

successful learning and reduced positional variability. This pattern substantiates the 

efficiency of PSO in moving the population from random locations to optimal solutions 

by repeated memory and cooperation operations. 

It may be noted from the examination of feature importance that W/B ratio exercises a 

dominating effect on both fcu and fsp, although fiber characteristics (specifically Vf 

and Df) come to play a significantly more important role as explanatory factors for 

tensile strength. This finding lends evidence to the hypothesis that compressive strength 

is extremely matrix-proportioning sensitive, while tensile strength is more composite-

sensitive response. 

 

The PSO plots confirm effective optimization by particle velocity acceleration and 

stabilization, followed by spatial convergence. This dynamic behavior demonstrates the 

effectiveness of PSO in robust model hyperparameter tuning, in turn enhancing the 

predictive capabilities of the ML models. Coupled with feature interpretation, the joint 

analysis confirms the effectiveness of integrating interpretable machine learning and 

evolutionary search algorithms like PSO to achieve high accuracy along with model 

interpretability in modeling fiber-reinforced concrete properties. 

 



 

 

International Journal for Research Trends in Social Science & Humanities 

Volume 3  Issue 4 

July-Aug 2025, PP 1-5 

 

15 

 

 

 
 

V. CONCLUSION 

 
This study presents a comprehensive approach for forecasting mechanical properties 
compressive strength (fcu) and splitting tensile strength (fsp) of steel fiber-reinforced 
recycled aggregate concrete (SFRRAC) by using machine learning (ML) models 
enhanced with Particle Swarm Optimization (PSO). Of the three Machine Learning 
models used to test them Gradient Boosting Machine (GBM), Stacking Regressor 
Model (SRM), and Histogram-based Gradient Boosting (HistGBM) HistGBM proved 
to perform better across all instances on both fcu and fsp in terms of better R2 and lesser 
RMSE and MAPE. The model's performance also improved after PSO hyperparameter 
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optimization, confirming the impact of the optimization in improving both accuracy 
and generalization. 

Findings in Table 1 revealed that before optimization, HistGBM was already better than 
the other models, particularly on compressive strength prediction, with highest R2 
values and lowest error rates. Results after optimization in Table 2 and Figure 2 also 
reaffirmed its superiority with drastic improvement in test accuracy and closer 
adherence to the ±20% prediction interval range. In addition, PSO optimization 
behavior, illustrated by the velocity and 3D movement patterns, confirmed the 
convergence stability behavior and optimization approach effectiveness. 
Further, feature importance analysis via SHAP showed the water-to-binder ratio (W/B) 
as the most influential parameter for compressive and tensile strength. Nevertheless, 
the fiber property contribution, particularly fiber volume fraction (Vf) and fiber 
diameter (Df), rose in regulating tensile strength, thus highlighting the need for 
balancing matrix and fiber design while designing high-performance SFRRAC. 
In conclusion, the synergy of advanced ensemble ML models and PSO optimization 
with the help of interpretable feature analysis forms a very potent, accurate, and 
interpretable prediction model for the complex behavior of recycled fiber-reinforced 
concretes. The findings present valuable contributions to academic research as well as 
engineering design in green concrete engineering. 
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