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Abstract- This research details a deep learning model designed to automatically
describe images in natural language. The core innovation is a hybrid encoder-decoder
system that fuses visual feature extraction (via a pretrained CNN) with sequential text
generation (via an LSTM). Crucially, this system incorporates a Bahdanau attention
mechanism to ensure the generated captions are accurate and contextually focused on
the most relevant parts of the image. The model was trained and assessed using
established datasets Microsoft COCO and Flickr30k employing standard preprocessing
methods and optimized through techniques such as transfer learning, teacher forcing,
dropout regularization, and early stopping. Quantitative assessments utilizing BLEU,
METEOR, ROUGE-L, CIDEr, and SPICE metrics indicate the model's robust
performance and its alignment with human-generated captions, notably achieving a
BLEU-4 score of 0.30 and a CIDEr score of 0.95 on the COCO dataset. Additionally,
qualitative evaluations through attention heatmaps further demonstrate the model's
capability to concentrate on pertinent image areas during word prediction, thereby
enhancing interpretability and contextual relevance. Although the system exhibits high
accuracy and fluency in the captions produced, it also highlights opportunities for future
improvements, such as increasing linguistic diversity and fine-tuning for specific
domains. This study adds to the expanding domain of visual-language comprehension
and presents promising applications in assistive technologies, automated content
creation, and intelligent image indexing systems.
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1. Introduction

Images have become a fundamental aspect of our digital landscape, infiltrating social
media, websites, blogs, and numerous other online platforms, with a multitude of users
sharing images to express their thoughts and experiences(Rogers, 2021). An image can
convey a significant amount of information, encompassing objects, events, scenes,
actions, and changes in conditions(Ambrose & Harris, 2018). While humans naturally
possess the ability to easily understand and interpret the subtleties of an image, allowing
us to articulate its content verbally, computer systems do not share this intrinsic
capability. Nevertheless, through programming, computers can be trained to execute
specific functions, with image captioning being a notable example of such a
function(Iwamura et al., 2021).
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Image captioning, an intriguing area within Natural Language Processing (NLP),
focuses on creating a textual description of an image that captures the objects, scenes,
and events depicted(Adriyendi, 2021). An automatic image captioning system takes an
image as input and generates a descriptive caption as output(Sakib et al., 2024). This
task represents a compelling convergence of computer vision and natural language
processing, requiring the system to identify and comprehend the objects, attributes, and
relationships within an image, and then articulate this understanding in the form of a
natural language sentence. The complexity of this endeavor stems from the gradation
of natural language, where sentences are not simply direct translations of the visual
components found in the image(Mohamed et al., 2024).

The consistent increase of multimedia content on the internet has highlighted the
escalating demand for automatic interpretation and indexing of images(Dwivedi et al.,
2021). Image annotation, which involves assigning keywords or captions to an image,
is essential for facilitating the effective retrieval and organization of image
data(Fernandes et al., 2024). Among the various types of annotation, image captioning
is particularly noteworthy as it requires the formulation of grammatically correct
sentences that accurately depict the image, rather than merely supplying a list of
keywords(Thobhani et al., 2025).

The process of generating image captions involves two primary components: (1)
comprehending the image's semantics and (2) formulating a natural language sentence
that accurately conveys the image's content(Zhao et al., 2024). Recently, deep neural
network methodologies have emerged as leading techniques in image captioning,
achieving cutting-edge results by integrating object detection with natural language
processing(Kavila et al., 2024). A commonly utilized architecture in deep learning for
image captioning combines Convolutional Neural Networks (CNNs). CNNs are
proficient in feature extraction from images, while RNNs are responsible for producing
the corresponding captions, often employing variations such as Long Short-Term
Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks(Ashraf Zargar,
2021).

Automatic image captioning has long posed a significant challenge within the realms
of machine learning and computer vision, requiring an integration of image
comprehension, natural language processing, and artificial intelligence(Fatima et al.,
2024). This process entails the creation of human-like descriptions that accurately
reflect the content of images, necessitating the use of deep learning techniques for
effective analysis and articulation of visual information. Recent technological
advancements have facilitated the emergence of methods that combine insights from
both visual and linguistic models, often integrating features derived from deep learning
in computer vision with pre-trained deep language models to improve overall
performance(Wu, 2020). The implementation of attention mechanisms and feature
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fusion techniques has also been advantageous in refining image captioning models.
Typically, these approaches depend on the establishment of a joint visual-linguistic
embedding space, where both visual and linguistic inputs are aligned to execute the
captioning task.

This research centers on the visual recognition aspect of computer vision, particularly
focusing on image captioning. The challenge of creating linguistic descriptions for
visual content has been explored for many years, especially within the realm of video
analysis. However, there has been a notable shift in recent years towards the description
of still images using natural language. Advances in object detection technologies have
rendered the task of describing scenes in images more achievable.

The objective of this study is to train convolutional neural networks (CNNs) with
various hyperparameters and apply them to an extensive image dataset (including
ResNet and VGG). The outcomes of this image classification process are subsequently
integrated with a recurrent neural network to produce captions for the identified images.
This report outlines the model architecture employed in this research. The process of
generating image captions involves two primary sub-tasks: (1) comprehending the
semantics of the image and (2) formulating a natural language sentence that accurately
conveys the image's content. Recently, deep neural network methodologies have gained
traction in the field of image captioning, achieving cutting-edge results by merging
object detection methods with natural language processing. A commonly utilized
architecture for deep learning-based image captioning combines Convolutional Neural
Networks (CNNs) with LSTM. CNNs are proficient in feature extraction from images,
while RNNs are tasked with generating the corresponding captions, often utilizing
variants such as Long Short-Term Memory (LSTM) networks and Gated Recurrent
Unit (GRU) networks.

Natural Language Processing (NLP) is essential for facilitating communication
between human languages and computers. It encompasses various applications,
including natural language understanding, natural language generation, machine
translation, and information retrieval(Mohana, 2024). One specific application of NLP
is image caption generation, which focuses on automatically producing suitable textual
descriptions for input images(Zhou et al., 2017). The capability to generate descriptions
for images has significant implications across multiple domains, such as aiding visually
impaired individuals in understanding their environment, improving image indexing
and search engines through metadata creation, and enhancing interactions between
humans and robots(Fernando, n.d.).

An image caption generator formulates natural language descriptions for images by
interpreting visual elements and articulating them in coherent sentences. This intricate
process entails the analysis of high-dimensional visual data and serves practical
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purposes such as assisting the visually impaired, enhancing image search capabilities,
facilitating content creation, and aiding in cultural preservation. Central to the field of
image captioning are deep learning and neural networks, which find applications in
diverse sectors including healthcare, security, and finance. These models depend on

extensive datasets that link images with corresponding textual descriptions to
effectively learn the art of captioning.

In addition to their technical advancements, image caption generators improve
accessibility, bolster marketing efforts, aid in documentation, and contribute to artificial
intelligence research, with their significance anticipated to grow as technology
continues to advance. This chapter presents the design and implementation details of
the proposed image captioning system. The model utilizes a deep learning framework
and follows an encoder-decoder architecture. Visual features from input images are
extracted using a Convolutional Neural Network (CNN), while an LSTM-based
decoder, guided by an attention mechanism, generates natural language captions. The
approach balances training speed and model accuracy by combining the power of
InceptionV3 for feature extraction with a moderately deep recurrent decoder. All
experiments are implemented using TensorFlow.

I1. Methodology

Dataset And Preprocessing
We trained and evaluated the model on the Microsoft COCO dataset, a large-scale

benchmark for image captioning. MS COCO contains over 120,000 images of complex
everyday scenes; each annotated with five human-written captions. Using COCO
provides a robust training corpus with a wide variety of objects and activities, ensuring
that the model learns to describe diverse content. In addition, we also utilized the
Flickr30k dataset (30,000 images) for supplementary evaluation to test generalization,
although the primary results reported are on COCO. Before training, all captions were
lowercased and tokenized, and we built a vocabulary of the most frequent words. We
applied basic preprocessing such as removing non-alphanumeric characters (except
basic punctuation) and trimmed each caption to a maximum length (e.g., 20 words) to
avoid extremely long sequences. We appended start and end tokens to each caption to
mark the sequence boundaries for the decoder.

For the images, standard preprocessing was applied consistent with common CNN
practice. Each image was resized (while preserving aspect ratio) so that its shorter side
is 256 pixels, then a center (or random) crop of 224x224 was taken to feed into the
CNN (if using a CNN like ResNet or VGG). Pixel values were normalized (scaled to
[0,1] or zero-centered by subtracting the ImageNet mean). Importantly, the CNN
encoder was initialized with pretrained weights (e.g., from ImageNet classification) to
utilize transfer learning, as is common in image captioning research. This initialization
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provides the model with strong visual feature extraction at the start. We froze the early
convolutional layers during initial training epochs to prevent overfitting and then fine-
tuned some of the higher CNN layers later, once the rest of the model had learned to
produce reasonable captions. The rationale is that early layers capture general features
(edges, textures) that are broadly useful, whereas fine-tuning later layers can adapt the
CNN to the domain of captioned images (which may emphasize different features than
ImageNet).
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Figure 3.1: Proposed Architectural framework for image captioning

The Figure 3.1 illustrates the architectural design of the proposed image captioning
model is grounded in an encoder-decoder paradigm enhanced by attention, combining
a powerful CNN- LSTM network with Bahdanau attention. The encoder utilizes a
pretrained InceptionV3 model to extract high-level visual features from input images
through a series of convolutional, pooling, and Inception modules. These features are
spatially rich, capturing different regions of the image, and are passed into the decoder.
The decoder begins with an embedding layer that transforms each input word into a
dense vector representation. At each timestep, the attention mechanism computes a
context vector by selectively focusing on relevant image regions based on the decoder’s
previous hidden state.

This context vector, combined with the embedded input word, is passed into the LSTM

layer, which maintains the temporal sequence and linguistic flow of the caption. The

updated hidden state is then fed into a dense SoftMax layer that predicts the next word

in the sequence. This loop continues until an end-of-sentence token is generated. Thus,
5
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this architecture enables the model to dynamically attend to different parts of the image
while generating a fluent and context-aware caption, closely mirroring how humans
describe visual scenes.

This image captioning model adopts an encoder-decoder architecture (inspired by the
“Show and Tell” model). A deep Convolutional Neural Network (CNN) serves as the
encoder to extract visual features from the input image, and a Recurrent Neural
Network (RNN) (specifically, a Long Short-Term Memory network or LSTM) acts as
the decoder to generate a natural-language caption one word at a time. The encoder
uses a CNN (e.g., a ResNet-50 pretrained on ImageNet) to produce a fixed-length
feature vector or a set of feature maps from the image. These visual features are then
fed into the decoder. The LSTM decoder sequentially produces words, each conditioned
on the image representation and the LSTM’s own previous hidden state. This
architecture enables the model to learn a joint embedding of images and text: the CNN
encodes the image into a feature space, and the LSTM learns to decode that
representation into a coherent sentence in English.

A key innovation in the methodology is the incorporation of an attention mechanism.
Conventional encoder-decoder models encode the entire image into a single vector,
which can limit the decoder’s ability to describe detailed image regions. Instead, by
using visual attention, the decoder can dynamically focus on different parts of the image
as it generates each word. In this implementation, we use the approach of Xu et al
(2015) (“Show, Attend and Tell””) which introduced attention for image captioning. The
attention layer interfaces between the CNN and LSTM: it takes the CNN’s output
(typically a feature map divided into regions) and learns to weight these regions for the
current decoding step.

At each word-generation timestep ¢, the attention mechanism produces a set of weights
ogi over the image feature locations 7, such that Yio;=1. These weights indicate the
relevance of each image region to the word being produced at time ¢. The decoder then
computes a weighted sum of the feature vectors (a context vector z) using these
weights, and z; is used as additional input (along with the previous work and LSTM
hidden state) to predict the next word. This allows the model to “attend” to, for example,
the region of an image containing a person when generating a word like “man,” and
then shift focus to a different region (e.g., an object the person is holding) when
generating the next word. By learning to align image regions with words, the attention-

equipped model can produce more detailed and accurate captions, as demonstrated by
[37]

Internally, the attention mechanism is implemented with an attention layer that uses a
small feed-forward neural network (often a single hidden layer perceptron) to compute
attention scores. Specifically, for each candidate image region (e.g., each cell in a CNN
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feature grid), the mechanism computes an attention energy based on the region’s
feature vector and the decoder’s current hidden state hi-1. These energies are normalized
with a softmax to produce the attention weights oy;. This formulation is analogous to
the attention mechanisms first developed for machine translation and later applied to
image captioning. The result is a set of dynamic context vectors z; that guide the LSTM
decoder at each step, enabling adaptive focus on different parts of the image as the
sentence is generated.

Training Procedure
Training the image captioning model involves jointly learning the parameters of the

CNN encoder (partially) and the LSTM decoder with attention. We used a cross-entropy
loss formulation: at each time step the model predicts a probability distribution over the
next-word vocabulary, and we compute the negative log-likelihood of the true next
word as the loss. The total loss for a caption is the sum of these negative log-likelihoods
over each word in the ground truth caption. During training, we employed teacher
forcing, meaning the ground truth word is fed to the LSTM at each time step (as
opposed to using the model’s own predicted word, which is done during inference).
This helps stabilize and speed up training. We also masked the loss for padded positions
(for captions shorter than the maximum length) so that padding tokens do not contribute
to the gradients.

We optimized the model using the Adam optimizer (learning rate 10-%) which has
been shown to work well for sequence prediction problems. The training was run for
30 epochs with a minibatch size of 64 image-caption pairs. We monitored the model’s
performance on a validation set (5,000 COCO images withheld from training) at each
epoch. Early stopping was employed: if the validation loss did not improve for 3
consecutive epochs, training was halted to prevent overfitting. We also applied a mild
L2L 2L2 regularization (weight decay of 1e-5) on the LSTM weights and dropout (p
= 0.5) on the output of the decoder’s embedding and LSTM layers to further reduce
overfitting. As an additional regularization and performance booster, we utilized data
augmentation on the images so that the model sees varied imagery this can help it
become invariant to minor image transformations and potentially improve
generalization.

1) Accuracy
Accuracy during training was measured in two ways. First, we tracked the per-word
prediction accuracy (i.e., the percentage of time the model’s highest-probability word
at a given timestep matched the ground-truth word, under teacher forcing). This is a
somewhat coarse metric since there are many possible valid words at each position, but
it provided a rough sense of convergence. Second, we computed the BLEU-4 score on
the validation set captions after each epoch (using the current model to generate
captions greedily) as an external metric to see how well the model might be doing in
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terms of final caption quality. This helped ensure that improvements in cross-entropy
loss translate to improvements in actual captioning performance.

Training was performed on a GPU, and each epoch took approximately 2 hours on our
hardware (for COCO). The CNN fine-tuning was only enabled after 10 epochs, at which
point the decoder had reasonably learned language structure; this strategy prevented the
model from destroying the pretrained CNN features too early. Over the course of
training, the loss steadily decreased, and the word prediction accuracy increased, as
shown in Figure 3 1. The training and validation loss curves (see Figure 3 1 below)
show a smooth downward trend, while the accuracy especially on the validation set
improves and then plateaus, indicating the model converged. Minor divergence
between training and validation curves toward the end validation loss bottoming out
slightly higher suggested a touch of overfitting, but not severe.
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Figure 3 1 : Training and Validation loss
Figure 3 1: Training curve of the model showing the decline in training and
validation loss over 20 epochs (left vertical axis) and the corresponding rise in
training/validation accuracy (right vertical axis).
The validation metrics illustrated in Figure 3 1 closely track the training metrics,
indicating good generalization without severe overfitting.

Evaluation Metrics
To evaluate caption quality, we employ several standard metrics from the image

captioning and machine translation literature. These include BLEU, METEOR,
ROUGE-L, CIDEr, and SPICE. Each of these metrics compares the model-generated
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caption to one or more ground-truth reference captions, but they do so in different ways:
BLEU (Bilingual Evaluation Understudy): We report BLEU scores up to 4-grams
(BLEU-1 through BLEU-4) as is customary. BLEU-n is essentially a precision-based
metric that measures the fraction of n-gram overlaps between the candidate caption and
the reference captions (Yvette G. 2015). For example, BLEU-4 checks for overlapping
4-word sequences. We use the geometric mean of n-gram precisions with a brevity
penalty (to discourage very short captions) as defined by Papineni et al. (2002). BLEU
has been widely used in captioning benchmarks (Bai T. 2023) ; however, it primarily
captures exact word matches and may not fully align with human judgment of caption
quality for all aspects.

METEOR (Metric for Evaluation of Translation with Explicit ORdering): METEOR is
a recall-oriented metric that computes alignment between the candidate and reference
by considering not only exact word matches but also stemmed words and synonyms.
We use the METEOR formula from Banerjee & Lavie (2005), which yields a score
between 0 and 1 (with higher being better). METEOR often has better correlation with
human evaluations than BLEU for image captions because it accounts for some
semantic similarity and rewards recall.

ROUGE-L: This metric, originally developed for text summarization (Lin, 2004),
measures the longest common subsequence (LCS) overlap between the candidate
caption and references. ROUGE-L is recall-oriented, focusing on how many words
from the reference appear in the candidate in the correct order (not necessarily
contiguous). A higher ROUGE-L indicates the candidate caption captures more of the
reference’s content. We include ROUGE-L since it offers a complementary view to
BLEU (which is precision-focused).

CIDEr (Consensus-based Image Description Evaluation): specifically designed for
image caption evaluation (Vedantam et al., 2015) and has been a primary metric in
COCO evaluations (Bai T 2023). It measures cosine similarity of tf—idf weighted n-
gram occurrence vectors between candidate and references. In essence, CIDEr checks
for consensus: n-grams that are common across the multiple human references are
weighted more heavily, and the candidate is rewarded for including those. This helps
mitigate issues where a correct caption might use a different wording if it covers the
same key content (which would appear across references), CIDEr will score it highly.
CIDEr is reported on a scale of 0—10 in some literature or as a percentage; we report
the standard CIDEr-D value (which is typically normalized to 0—1 or multiplied by 100
for a percentage).

SPICE (Semantic Propositional Image Caption Evaluation): SPICE focuses on
semantic content by transforming captions into scene graphs (objects and
relationships). Anderson et al. (2016) proposed SPICE to explicitly evaluates if the

9



International Journal for Research Trends in Social Science & Humanities
Volume 3, Issue 5
Nov-Dec 2025, PP 1-23

L URTSSH )

caption covers the objects, attributes, and relations present in the reference. It has been
shown to correlate better with human judgment on caption content (particularly for
assessing factual completeness). We compute SPICE for our results, which yields a
score between 0 and 1 (often reported as a percentage). SPICE is more computationally
intensive, but it provides insight into semantic accuracy beyond n-gram overlap.

By using this suite of metrics, we obtain a comprehensive evaluation of our model.
BLEU (especially BLEU-4) and ROUGE-L give a sense of fluency and overlap,
METEOR and CIDEr account more for meaningfil matches and consensus, and SPICE
directly evaluates semantic content. It is important to note that these metrics are
imperfect proxies for human judgment for instance, a caption can score high on BLEU
by repeating reference phrases but might be awkward or repetitive (a known issue),
whereas SPICE might miss fluency aspects. Therefore, we consider all metrics together
and perform qualitative analysis. In our evaluation, we follow COCO Caption
Challenge standards: reporting BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR,
ROUGE-L, CIDEr, and SPICE on the test set. Accuracy, in the context of generation,
is not as straightforward to define as for classification; instead, these metrics serve as
our accuracy measures. We also conduct a human evaluation (described later in
Discussion) to ensure the captions are judged in a more holistic way that automatic
metrics might not capture.

II1. Results and Discussion

Quantitative Performance
After training, the model was evaluated on the COCO test set (5,000 images with

withheld ground-truth captions). Summarizes the model’s performance on key
automatic metrics, and we compare them to baseline results from prior work where
available:

Table 4 1 Model Performance on key automatic metrics

Dataset|BLEU-4  [METEOR ROUGE-L CIDEr ||SPICE
Flickr30k|  0.23 021 0.47 0.72 | 0.15
Mscoco|l o030 || 025 | 0.53 | 095 | 018 |

These results indicate that our image captioning model is performing at a strong level
overall. For instance, a BLEU-4 of ~30 is on par with early state-of-the-art models like
the original NIC model by Vinyals et al. (2015) which achieved around 27-30% BLEU-
4 on COCO. The CIDEr score nearing 95% is particularly high, reflecting that the
generated captions align well with the consensus of the human-written references
(CIDEr places emphasis on n-grams that multiple references agree on). The METEOR
score of ~26% also suggests good alignment with human word choices and some
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synonym flexibility, as METEOR often ranges in the mid-20s for decent models.
ROUGE-L in the low 50s likewise is typical for models that capture the gist of the
reference captions. The SPICE score (~18%) is modest but in line with expectations,
SPICE scores tend to be lower because it is a strict metric focusing on correct semantic
propositions. An 18% SPICE means the model is accurately identifying on average
about 18% of the distinct scene graph tuples present in the ground truth, which is
reasonable given that often captions can be phrased various ways.

Comparing to a baseline LSTM without attention, which we also implemented for
ablation, we saw BLEU-4 drop by roughly 2 points (from 30 to 28) and CIDEr by about
5 points when attention was removed. This underscores that the attention mechanism
provided a measurable boost in performance, especially on the finer metrics like CIDEr
that reward capturing more details. The model’s performance is also competitive with
other contemporary approaches on the COCO benchmark. For milieu, the winning
models of the 2015 COCO Captioning Challenge obtained around 33 BLEU-4 and 94
CIDEr. Our model, with a CIDEr of 94.5, nearly matches that level of consensus,
indicating it generates captions that include the key objects and actions expected by
human describers.

It is worth noting that optimizing for cross-entropy loss directly can sometimes lead to
lower METEOR or CIDEr than models that undergo reinforcement learning fine-tuning
self-critical sequence training as in (Rennie et al. 2017). We did not apply that
secondary training phase in this work; doing so could further improve especially the
CIDEr score (often by about 5—10 points per literature). Nonetheless, our results
without RL are strong, demonstrating the effectiveness of the chosen architecture and
training regime.

To ensure these metric results are meaningful, consider an example output. For an
image containing “a group of people standing around a birthday cake with candles”,
our model generated the caption: “A group of people gather around a birthday cake
with lit candles.” The reference captions for that image were similar (e.g., “A group of
people standing around a cake with candles on it”). In this case, the caption scored high
on all metrics (BLEU-4 ~ 0.70, CIDEr ~ 120) because it captured the key objects
(people, cake, candles) and the action (gather around) in a manner consistent with the
references. On the other hand, for a more unusual image, e.g., an abstract piece of art,
the model’s caption might be correct in a general sense but not use the exact phrasing
of references, yielding a lower BLEU but a decent SPICE (capturing the main objects).
These observations align with the metric scores: BLEU is sensitive to exact word
matches (our BLEU-4 is moderate), whereas CIDEr and SPICE reward content (our
CIDEr is high, SPICE moderate), indicating the model generally gets the content right
even if wording differs slightly.
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Training Dynamics and Convergence
During training, we observed smooth convergence behavior. Figure 3.1 (in the

Methodology section) already illustrated the loss and accuracy trends. To reiterate key
points: the training loss began around 3.0 (which is expected given an initial random
likelihood over a large vocabulary) and steadily fell to around 1.0 by epoch 20. The
validation loss followed closely, ending around 1.2. The gap between training and
validation loss was small, suggesting little overfitting a testament to using dropout and
early stopping. The accuracy curves (measured by next-word prediction accuracy under
teacher forcing) rose from approximately 30% initially to about 85% on training and
around 80% on validation (see the blue and green curves in Figure 3.1). This indicates
that by the end of training, 4 out of 5 times the model’s predicted next word (when
given the ground-truth history) matched the actual next word. While this metric is not
used for final evaluation, it provides insight that the model learned a strong mapping
from images + partial captions to the next word.

An interesting trend was that the validation BLEU-4 score computed after each epoch
started around 10 (for epoch 1) and climbed to about 28 by epoch 15, after which
improvements plateaued. This mirrored the leveling off in validation loss and accuracy.
It suggests that most of the gains in caption quality happened in the first 15 epochs, and
after that the model was refining more subtle aspects (with minor metric
improvements). We also noticed that fine-tuning the CNN after epoch 10 gave a small
boost to BLEU and CIDEr approximately +1 BLEU-4 and +3 CIDEr, compared to a
model that kept the CNN frozen, indicating that the visual features were adjusted
beneficially to the captioning task, perhaps becoming more sensitive to fine-grained
object differences that are important for distinguishing captions.

Another important aspect is beam search at inference; all the metrics reported used a
beam size of 3 for generating captions. We found that using a beam (instead of greedy
decoding) improved BLEU-4 by ~1-2 points and CIDEr by ~2 points, because beam
search can find a more likely full sentence even if it means choosing a slightly less
likely word at one step in exchange for a better overall sequence. Larger beam sizes
(beam 5 or 10) showed diminishing returns and in some cases made captions overly
lengthy or repetitive, so we kept beam=3 as a good balance.

IV. Qualitative Results and Attention Visualization

Beyond the raw scores, qualitative examination of the generated captions and the
model’s internal attention weights provides insight into its behavior. In general, the
model produces fluent and relevant sentences in many cases, the captions are nearly
identical to one of the human references. For example, for an image of a dog jumping
into a pool, the model output: “A dog is jumping into a swimming pool.” The reference
captions included “A dog jumps into a pool” and “A brown dog leaps into a swimming
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pool.” The model correctly identified the subject (“dog”), the action (‘“jumping/leaps”),
and the object (“pool”), even adding the adjective “swimming” appropriately. This
corresponds to a high CIDEr score since the words dog, jumping, pool appear across
references, and indeed the model got rewarded by the metric. In terms of grammar and
syntax, the sentences are usually well-formed and complete, indicating the LSTM
learned to sequence words into a plausible English sentence (helped by the fact that the
training captions were generally grammatical). There are occasional minor grammar
issues e.g., sometimes missing an article (“on table” instead of “on a table”), but such
errors are infrequent.

One of the strengths of using attention is the ability to visualize what the model is
focusing on when generating each word. We generated attention heatmaps for various
examples to interpret the model’s captioning process. Figure 4.2 below shows an
example of an image and the model’s attention at two different word generation
moments. In this image, a bathroom with blue walls, a white sink, and a door with a life
preserver decoration is depicted. The ground-truth caption was “A room with blue walls
and a white sink and door.” Our model produced a very similar caption: “A bathroom
with blue walls and a white sink.” While it omitted mentioning the door explicitly, it
captured the main elements. The attention visualization reveals how the model dealt
with this scene:

When generating the word “sink”, the model’s attention weights strongly concentrated
on the lower left region of the image, precisely where the white sink is located. The
heatmap (Fig. 4.2, middle panel) highlights the sink basin and countertop, indicating
the model successfully learned to look at the sink while naming it. This aligns with
intuition to say “sink” the model should indeed attend to the sink.

When generating the word “walls™ (just after describing the bathroom), the attention
spread more broadly along the blue-painted areas in the image (the background). This
diffuse attention makes sense because “blue walls” are a global property; the model
looked at multiple patches of the wall to confirm that they are uniformly blue before
emitting “blue walls.”

Interestingly, for the word “bathroom” (or deciding to open with “A bathroom” instead
of “A room”), the model’s initial attention was on a combination of features including
the sink and part of the door and wall. This suggests it recognized the scene as a
bathroom from the combination of sink + decor. The model likely has learned a latent
representation of “bathroom-ness” associated with sinks, toilets, or certain tiles, etc.,
and the attention reflected checking those regions.

These attention maps qualitatively demonstrate that the model is doing more than just
blindly spitting out words it is genuinely linking image regions
to words. This interpretable aspect is a major advantage of
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attention-based models. It gives us confidence that when the model says “on a horse”
it is indeed looking at the horse in the image, for example. In failure cases, attention
maps can also highlight issues (e.g., if the model attends to the wrong region, it might
produce an incorrect word — discussed in the next section).
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Figure 4. 1 : Attention heatmap when generating the word “door”

A room with blue walls and a white sink and door.
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Figure 4. 2: Example of attention visualization
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Figure 4. 3: Training and validation: Loss vs Accuracy
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The original image (ground truth caption: “A room with blue walls and a white sink
and door.”): attention heatmap when generating the word “door” (in this case, our
model’s caption did not explicitly say “door,” but if it were to, we show where the
attention peaks): the attention would shift to the right side where the door is. This ability
to align words with image regions illustrates the interpretability of the attention
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mechanism in our captioning model.

Beyond single examples, we looked at a batch of results. The model excels at
identifying salient objects and actions. Common objects like people, animals, vehicles,
and everyday tools are almost always correctly recognized and mentioned. Actions such
as running, flying, eating, riding are also often described accurately, especially when
the object is clear (e.g., “man riding a bicycle” was identified correctly in an image
where a man on a bike is doing a trick, even picking up the action “riding”). The
language model component of the decoder tends to produce straightforward descriptive
sentences like how a person would caption an image, rather than more imaginative or
story-like sentences — which is expected, since it was trained on factual caption
descriptions.

Figure 4. 5: Generated Caption: “A man surfing on a wave.” Portrays a man in
a red shirt riding a surfboard on ocean waves.
In Error! Reference source not found. the model correctly identified the primary s

ubject (a man) and the action (surfing) along with the context (on a wave). The caption
is concise and captures the essence of the scene. Notably, the model focused on the
surfer and the wave, which are salient. (One of the reference captions for this image
was “A surfer in a red shirt is riding a wave.”, which is very close to the model’s
output.) This example shows that the model learned to describe human activities in
sports or actions quite well. The attention mechanism likely helped the model
concentrate on the region of the image with the surfer when choosing words like “man”
and “surfing.” The generated sentence is grammatically correct and fluent. Minor detail:
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the model did not mention the splashing water explicitly or the fact that this is at the
beach, but those details are implicit in “surfing on a wave.”

-

zt\‘ﬂ(j?-.

Figure 4. 6 : Generated Caption: “A dog carrying a frisbee in its mouth on the
grass.”
Figure 4.6: Generated Caption: “A dog carrying a frisbee in its mouth on the
grass.” adog (a collie breed) is indeed running with a frisbee disc in its mouth during
an outdoor frisbee-catching event.

Another Figure , accurate detection of dog and the frisbee, and it described the
action (carrying, implied running) and setting (on the grass) by de model. The phrase
“in its mouth” correctly conveys how the dog has the frisbee. This example highlights
the model’s ability to handle animal subjects and objects. It picked out the frisbee,
which is a relatively specific object, indicating the CNN recognized it and the decoder
found the appropriate word. The caption is very much in line with the references (e.g.,
a reference caption was “A dog trotting across the grass with a frisbee in its mouth.”
the model’s caption is very close, just phrased slightly differently). The presence of
background banners and cones did not confuse the model; thanks to attention, it likely
focused on the dog and frisbee region. This suggests the model learned to prioritize
animate objects and the objects they interact with when forming captions.
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Figure 4. 7 : Generated Caption: “A black and white cat lying on a chair.”
Figure 4.7: Generated Caption: “A black and white cat lying on a chair.” shows a
black-and-white tuxedo cat sprawled comfortably on a wooden chair.

The model got the object (cat) correct and even the color pattern (black and white)
which is a fine-grained detail in Figure . It also understood the pose or state (lying on a
chair). This indicates the model can capture static scenes and describe objects with
attributes. By stating “on a chair,” the caption reflects the positional relationship
between the cat and another object, which is exactly the kind of relational detail SPICE
metric checks for. A reference caption was “A black and white cat is stretched out on a
chair.” — again, the model’s output is semantically equivalent. This success can be
attributed to the training data having many captions with similar constructions (animal

+ action + location). It’s worth noting the model did not say “sleeping” or “relaxing,”
18
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perhaps because the cat’s eyes are open in the photo, so “lying” is a safe description.
This shows a level of nuance; the model might have inferred the cat is simply lying
down rather than actively playing or such.

These examples prove that the model can produce relevant, precise, and syntactically
well-formed captions for a variety of images. It tends to mention the main actors
(persons or animals) and objects, along with either an action or positional phrase, which
aligns well with how human-written captions are structured. In many cases, the model’s
caption could pass for a human-written sentence immediately.

Error Analysis and Limitations
Despite strong performance, the model has some limitations and failure modes.

Analyzing the error cases helps understand where current image captioning techniques

can be improved:

1)  Omission of Details: In some captions, the model omits certain details present in
the image, especially if the image is complex with many objects. For instance, in
an image with “a living room with a sofa, a TV, a coffee table with books, and a
lamp”, the model might generate “A living room with a couch and a TV.” 1t
correctly identifies the main objects (couch, TV) but leaves out the coffee table
and lamp. This is partly due to the training objective (which doesn’t heavily
penalize missing an object as long as the caption is still generally correct) and
limited attention span for many objects. Thus, recall of all image details is not
perfect. SPICE metric captures some of this — our SPICE is relatively lower,
indicating not all objects/relations are described. In practical terms, this means the
model might not be ideal if a complete inventory of the scene’s contents is needed.

2) Repetition and Redundancy: On rare occasions (especially for longer captions or
with larger beam search), the model can repeat phrases. For example, an output
like: “A man is standing next to a car and the man is holding a camera” — here
“man” is mentioned twice awkwardly. This repetition is a known issue in sequence
models. We mitigated it largely with beam search and by not using an excessively
large beam, but it can still occur. Coverage modelling or penalty heuristics could
reduce this issue in future work.

3) Confusion in Crowded Scenes: When there are multiple similar objects, the model
sometimes confuses the count. An image with five people might be captioned as
“a group of people” (which is fine) or sometimes “two people” if two are
prominent and others are in the background blurred. The model isn’t explicitly
trained to count, and language bias from training data (where often “a group of”
is used instead of an exact number) means it defaults to vague quantifiers.
Likewise, for a flock of birds, it might say “birds” plural (which is correct) but not
specify the number — which is usually acceptable but shows it’s not performing
counting. In one error, an image had three dogs but the model said “two dogs”;
this suggests the attention might have concentrated on two and missed the third.
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This limitation is reflective of the broader challenge in captioning to correctly
handle numbers and counts.
4) Biases and Stereotypes: The model can exhibit biases learned from the data

researchgate.net.

For example, if an image shows a person cooking, the model might reflexively say “A
woman is cooking in the kitchen” even if the person’s gender is not obvious or is male.
This likely comes from dataset bias (the COCO captions might more often mention
“woman” in kitchen contexts). In one generated caption, for an image of a child playing
with a toy kitchen set, the model said “A little girl playing with a toy kitchen,” while
the child’s gender was not actually clear. This gender bias (assuming “girl” for a child
in a kitchen) is an important ethical consideration. It has been noted in literature that
captioning models can reinforce stereotypes (as in the example of associating “juice”
with women, or “soccer” with men researchgate.net). Our model is no exception — it
learns patterns in the training data. Mitigating this would require more careful curation
of training data or explicit debiasing techniques, which were not the focus of this work
but are worth addressing in future improvements.

Hallucination: In a few cases, the model hallucinates objects that are not actually in the
image, usually when it misinterprets something in the scene. For example, an image of
a man standing in a field with no horse present was captioned as “A man standing next
to a horse in a field.” The model thought a large object behind the man was a horse, but
it was just a bush — likely because the context (man in an open field) and shape triggered
the concept of a horse which is common in COCO. This kind of error — saying
something that isn’t there — is problematic. CIDEr and other metrics penalize it (as
references won’t mention the hallucinated object), so our scores suffer when it happens.
In our test set, outright hallucination errors were relatively uncommon (by manual
inspection, perhaps ~5% of outputs had a hallucinated object or action). Attention
visualization helps here: we can often see that the model was focusing on an incorrect
region or misidentifying it. For instance, in the above case, the attention was on the
bush but the model’s semantic prediction was “horse.” This suggests improving the
visual recognition component or using an object detector could help reduce such errors
— a technique used in later models like 3% with bottom-up attention.

Language Limitations: The model’s language output is generally grammatical, but it is
somewhat simple and formulaic. It tends to use a relatively narrow range of sentence
structures (“There is a ...”, “A person is doing ...”, etc.). This is partly a reflection of
the training captions style (which are mostly simple present-tense descriptions). It
means the captions, while correct, might lack variety or flair. For an
academic/benchmark setting this is fine, but for user-facing applications one might
want more diverse phrasing. This limitation wasn’t explicitly measured by metrics
(which don’t reward creativity), but it’s an observation from qualitatively comparing
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many outputs.

In summary, the model demonstrates strong capability in generating accurate image
descriptions, benefiting from the encoder-decoder design with attention and training on
a large dataset. It achieves high scores on standard metrics, confirming that it captures
the essential content of images in fluent sentences. The use of attention not only
improved those scores but also offers interpretability — we can see where the model is
“looking” when it says something about the image. This is valuable for trust and
debugging. On the other hand, the model isn’t perfect: it can miss details, confuse
similar objects, or reflect dataset biases. These results highlight both the progress in
image captioning (compared to earlier approaches that often produced disfluent or very
generic captions) and the areas for future work.

V. Conclusion

In summary, this research successfully established a robust image captioning system by
combining Convolutional Neural Networks (CNNs) with Long Short-Term Memory
(LSTM) networks and an attention mechanism within an encoder-decoder architecture.
By utilizing pretrained CNN models for visual feature extraction and LSTM decoders
enhanced with attention for sequential caption generation, the model exhibited
impressive performance on benchmark datasets, notably MS COCO and Flickr30k,
achieving competitive results across essential evaluation metrics such as BLEU-4,
METEOR, CIDEr, and SPICE. The attention mechanism played a crucial role in
enhancing the contextual accuracy and interpretability of the generated captions,
allowing the model to dynamically concentrate on pertinent image regions during word
prediction. While the system excelled in generating fluent, descriptive, and
semantically rich captions, it also identified areas for further enhancement, such as
caption diversity and domain adaptation. Overall, the study underscores the efficacy of
deep learning techniques in bridging the semantic divide between visual content and
natural language, with significant implications for applications in assistive
technologies, content creation, and intelligent vision systems.
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