

Science as a Social Institution: Sociological Reflections on Sustainability and Development

Deepa S V

Associate Professor, Dept. of Sociology GFGC, Yelahanka

Abstract- This review article seeks to look into the critical connection between science as a social institution and two of the pressing global challenges: sustainability and development. Science is generally perceived to be an objective quest for knowledge; it is, however, fundamentally embedded within the social structure influenced by political, economic, and cultural forces.¹ Its institutional features, like funding mechanisms, research priorities, peer review processes, and the authority granted to experts, determine the course and influence of technological and theoretical development pertinent to environmental and developmental issues. Drawing from some key sociological perspectives, including the SSK, modernization theory, and critical theory, among others, conceptual clarity is established for science, social institution, sustainability, and development. A literature review reveals tension between positivist faith in technological fixes that emanates primarily from institutional science and a call for holistic, equitable, and locally appropriate solutions by sociologists. The core reflection contends that true inclusive sustainability and development require moving away from considering science simply as a source of technical solutions toward holding it socially accountable. For this, it argues, democratic governance of science, a focus on indigenous and local knowledge systems, and a critical analysis of the ways whereby institutional science reinforces or subverts existing power structures that perpetuate unsustainable practices and global inequalities, will be seminal. A conclusion calls for a renewed sociological agenda—one that actively engages and contests the institutional framework of science—to bring forth a more just and sustainable future for all.

Keywords- Science as a social institution, Sustainability, Development, Technological Fixes, Social accountability, Knowledge systems, Power structures, Sociological Agenda.

I. Introduction

The twin imperatives of global sustainability and equitable development dominate the discourse of the 21st century. While natural sciences and engineering are traditionally seen as the main drivers for solutions, such as renewable energy and climate modeling, this paper argues that a proper comprehension of the challenges is impossible without a sociological perspective. That requires considering science as a social institution, one with structure, norms, values, and a distribution of power. The goal is then to move beyond the technocratic view to offer a critical sociological reflection on the institution of science in light of the global sustainability-development agenda.

Conceptual Clarity: Defining the Core Elements

Conceptualizing Science and the Social Institution

Science is defined here not merely as a body of knowledge, but as a systematic and organized activity characterized by specific methodologies (Merton, 1973). Crucially, it operates as a social institution—a relatively stable and enduring complex of norms, roles, and values that regulates the relationship between individuals and groups in

achieving certain societal ends (e.g., knowledge production, health, defense). The norms of scientific institutions (CUDOS: Communalism, Universalism, Disinterestedness, Organized Scepticism) are often ideals, with actual practice shaped by funding, politics, and corporate interests (Hess, 2007).

Conceptualizing Sustainability and Development

Development has evolved from purely economic growth metrics (GDP) to include human development (Sen, 1999), emphasizing freedom, capabilities, and equitable access.² Sustainability is famously defined as "meeting the needs of the present without compromising the ability of future generations to meet their own needs" (Brundtland Commission, 1987), encompassing environmental integrity, social equity, and economic viability.³ The sociological challenge lies in integrating development's social goals with sustainability's ecological constraints.

II. Review of Literature and Theoretical Context

The framework for this analysis resides in the sociological literature.

- **Sociology of Scientific Knowledge and Critical Studies:** Authors like Latour (1987) and Jasanoff (2004) illustrate that scientific facts are social constructs and knowledge claims are situated in particular cultural and institutional contexts. This, therefore, challenges the view of science as a wholly objective source of truth for sustainability solutions.
- **Modernization and Dependency Theory:** Early literature viewed science and technology transfer as the engine of development (Rostow, 1960). However, critical dependency theorists such as Frank (1966) viewed this transfer as reinforcing global power asymmetries, with recipient nations becoming dependent upon the institutional science and technology of the Global North.
- **Environmental Sociology:** The work of Catton & Dunlap 1978 centers on the structural roots of environmental problems, shifting emphasis from blaming the individual to critiquing the institutional-economic system that is served by institutional science.

Scope of the Study

The focus of this review article is on the institutional role of science, its governance, funding, and social authority, in intersection with the policy and implementation of the United Nations SDGs. Geographically, it adopts a global perspective, contrasting the institutional science of the Global North with the knowledge systems of the Global South.

Objectives of the Study

1. To critically analyse how the norms and structure of science as a social institution shape research priorities around issues of sustainability and development.
2. To examine the sociological tension between technocratic 'solutions' driven by institutional science and a need for socially just and participatory processes.
3. Reflect on how scientific authority reinforces or dismantles power structures associated with environmental exploitation and unequal development.

Sociological Reflections on Sustainability and Development: The Institutional Role of Science

The Production of Knowledge and Power

When institutional science is driven by large funding from either government or corporate sources, it often selects problems that reflect the interests of powerful actors. For instance, research in geo-engineering techno-fix for climate change may receive high institutional priority, while research in community-level resilience or the socio-economic impacts of land dispossession will be received with much lower priority. This constitutes a case of institutional problem selection, wherein science plays not the role of neutral arbiter but rather that of legitimization agent for specific kinds of solutions.

For Example:

Sociological Reflections: The Critique of Geo-engineering

The institutional pursuit of geo-engineering (e.g., Stratospheric Aerosol Injection (SAI) or massive-scale Carbon Dioxide Removal (CDR)) offers a perfect case study for critically assessing science as a social institution in the context of sustainability. Sociological analysis moves beyond the technical risks to examine the social, political, and ethical dynamics driving this research.

A. The "Technological Fix" Mentality and Institutional Inertia

Geo-engineering proposals are often criticized as the ultimate "technological fix"—a complex, large-scale intervention designed to manage the symptoms of climate change without addressing its fundamental social and economic drivers.

- **Distraction from Root Causes:** By offering the promise of a quick, large-scale cooling mechanism, institutional science risks creating a moral hazard. This provides political and economic cover for the dominant actors—especially the fossil fuel industry and wealthy nations—to delay the costly and politically challenging structural changes required for genuine mitigation, such as phasing out fossil fuels and reforming industrial capitalism.
- **Reinforcing the Status Quo:** The institutional science that champions geo-engineering is often funded by, and operates within the worldview of, the Global North's technological and economic elite. This research direction implicitly reinforces the prevailing system by focusing on managing the Earth system rather than changing the unsustainable patterns of production and consumption that generated the crisis in the first place.

B. Geo-engineering and Global Power Asymmetries

The governance and deployment of geo-engineering reveal profound global inequalities, making it a critical development issue.

- **Neo-Colonialism and Risk Imposition:** Research in Solar Radiation Management (SRM) is concentrated among a small group of researchers, often white men at elite institutions in the Global North, many funded by billionaires or military interests. The deployment of such technologies, which could have unpredictable regional side effects on rainfall, monsoons, and agriculture, risks a form of neo-colonialism where the Global North decides to unilaterally intervene in the global climate system, while the Global South bears the disproportionate, unpredictable consequences.

- **Justice and Accountability: Sociological justice concerns centre on:**
- **Procedural Justice:** Who gets to decide? Decision-making on such planet-altering technology is highly concentrated, ignoring the need for public participation and the perspectives of Indigenous Peoples and frontline communities who are most vulnerable to both climate change and potential geo-engineering side effects.
- **Distributive Justice:** Who benefits and who loses? While some models suggest geo-engineering could reduce economic inequality by cooling the tropics, the potential for uneven cooling, drought in critical regions, and political conflict suggests the Global South is likely to be the "loser" in a system it did not choose or control.

C. The Institutional Marginalization of Social Solutions

By focusing enormous institutional resources (funding, prestigious academic focus, media attention) on grand technological schemes, the scientific institution inadvertently marginalizes social and holistic solutions necessary for true sustainability.

- **Undermining IKS and Local Resilience:** The top-down, standardized nature of institutional geo-engineering technology is inherently incompatible with valuing Indigenous Knowledge Systems (IKS) and community-based, local resilience strategies—approaches that are often more aligned with long-term, equitable sustainability.
- **The Governance Vacuum:** The technical feasibility of geo-engineering is outpacing the development of any legitimate, equitable global governance framework capable of making deployment decisions fairly. This demonstrates a failure of science as a social institution to integrate governance, ethics, and social justice at the very beginning of the research agenda, rather than viewing them as an afterthought.

In sum, the push for geo-engineering is a powerful example of how the institutional priorities of science—driven by the appeal of elegant technical solutions and powerful political/economic backers—can perpetuate global inequalities and undermine the structural changes required for genuine, socially equitable development and sustainability.

Science as an Agent of Legitimation

Science serves as an agent of legitimation, with the appearance of objectivity, rationality, and authority in grounding political choices, policy decisions, and technological pathways. As an institution, science utilizes the belief of the public in its objectivity and rigor as cultural authority to grant social power to the solutions it promotes.

Mechanism of Legitimation

Conferring Technical Competence means that Science, through its experts, peer review, and complex methodologies, makes an authoritative claim of what is the "best" or "most effective" option based upon empirical data and, in that process, forecloses or marginalizes non-scientific alternatives.

- **Depoliticizing Decisions:** The mention of scientific findings allows policymakers to frame controversial decisions as mere "following the evidence," shifting

accountability away from political or ideological choices and toward technical necessity, hence making the chosen solution neutral and inevitable.

Example 1: Climate Policy and Economic Modeling: In the climate and development sphere, economic models, which are a form of institutional social science, are often used to determine what level of reduction in carbon emissions is "optimal".

The Technical Solution: A model could determine that a global carbon tax at \$X per ton will hit a given temperature target with the least economic cost in terms of global GDP.

Legitimation: By framing the carbon tax as a scientifically calculated, economically rational solution, the model legitimates a particular market-based approach. It marginalizes other approaches, more structurally transformative approaches-such as radical de-growth, wealth redistribution, or an immediate ban on fossil fuels-by framing those alternatives as economically irrational or politically extreme, even though they might be more socially equitable.

Example 2: The "Green Revolution": The widespread adoption of high-yield seed varieties, fertilizers, and irrigation techniques of the mid-20th-century Green Revolution was highly legitimized by institutionalized science.

The Technical Solution: Agronomists provided "proof" that these high-tech inputs were the necessary, science-backed means to solve hunger and increase food security in the Global South.

Legitimation: The scientific seal of approval gave political and financial powers (such as the World Bank and national governments) license to impose policies that facilitated large-scale, industrialized farming. Simultaneously, it delegitimized and marginalized traditional, local, and indigenous agricultural knowledge systems, leading them to be viewed as "unscientific" or "backward," despite their ecological sustainability and cultural fit. Science, here, legitimized a solution that reinforced commercial interests and global dependencies.

The Challenge of Social Accountability

A key sociological critique is that institutional science often lacks social accountability. Decisions about what constitutes a "valid" sustainability solution are often made by a small group of scientific elites and policymakers. "The institutional autonomy of science, while protecting academic freedom, can simultaneously insulate it from the democratic demands of those most affected by the outcomes of research, particularly marginalized communities."

True sustainability and development require the inclusion of local and indigenous knowledge systems (IKS). IKS are often dismissed or marginalized by the institutional hierarchy of Western science, despite offering time-tested, context-specific, and holistic approaches to ecological management.⁴ Sociological engagement demands a "democratization of expertise," where scientific authority is shared and hybridized with practical, local knowledge (Jasanoff, 2004).

Science and Inequality

Science's institutional ties can exacerbate global and local inequalities. The "green revolution," for instance, a major development initiative driven by institutional

agricultural science, dramatically increased crop yields but simultaneously increased the cost of inputs (seeds, fertilizer), benefiting large landowners while marginalizing smallholders and increasing dependence on corporate-controlled technology (Shiva, 1991).⁵ The focus of institutional science on high-tech solutions often bypasses the need for fundamental social and structural change necessary for poverty eradication and resource equity.

III. Conclusion

The review confirms that science cannot be understood in isolation from its institutional context. The quest for sustainability and development is fundamentally a social and political project, not merely a technical one. The institutional structures, norms, and funding of science select which problems are addressed, how they are framed, and whose interests are served. A truly sustainable and equitable future depends on a critical re-evaluation of science as a social institution—one that promotes democratic governance, values diverse knowledge systems, and shifts its focus from technocratic fixes to support fundamental social and structural change.

References

1. Brundtland Commission. (1987). *Our common future*. Oxford University Press.
2. Catton, W. R., & Dunlap, R. E. (1978). Environmental sociology: A new paradigm. *The American Sociologist*, 13(1), 41–49.
3. Frank, A. G. (1966). The development of underdevelopment.⁶ *Monthly Review*, 18(4), 17–30.
4. Hess, D. J. (2007). *Science and technology in a multicultural world: The cultural politics of experts and lay people*. Columbia University Press.
5. Jasanoff, S. (2004). *States of knowledge: The co-production of science and social order*. Routledge.
6. Latour, B. (1987). *Science in action: How to follow scientists and engineers through society*. Harvard University Press.
7. Merton, R. K. (1973). *The sociology of science: Theoretical and empirical investigations*. University of Chicago Press.
8. Rostow, W. W. (1960). *The stages of economic growth: A non-communist manifesto*. Cambridge University Press.
9. Sen, A. (1999). *Development as freedom*. Anchor Books.
10. Shiva, V. (1991). *The violence of the green revolution: Third world agriculture, ecology, and politics*. Zed Books.